示例#1
0
def tree_gaussian_kernel(tree,
                         plane='xy',
                         feature='radial_distances',
                         title='',
                         diameter=True,
                         treecol='b',
                         xlims=None,
                         ylims=None,
                         **kwargs):
    '''Subplot with ph, barcode
       and tree within spheres
    '''
    from tmd import utils as _utils
    from matplotlib.collections import LineCollection

    kwargs['output_path'] = kwargs.get('output_path', None)

    fig1, ax1 = _view.tree(tree,
                           new_fig=True,
                           subplot=121,
                           plane='xy',
                           title=title,
                           treecolor=treecol,
                           diameter=diameter)

    feat = getattr(tree, 'get_section_' + feature)()
    segs = tree.get_segments()

    def _seg_2d(seg):
        """2d coordinates required for the plotting of a segment"""

        horz = _utils.term_dict[plane[0]]
        vert = _utils.term_dict[plane[1]]

        horz1 = seg[0][horz]
        horz2 = seg[1][horz]
        vert1 = seg[0][vert]
        vert2 = seg[1][vert]

        return ((horz1, vert1), (horz2, vert2))

    if plane in ['xy', 'yx', 'zx', 'xz', 'yz', 'zy']:
        ph = _tm.methods.get_persistence_diagram(tree, feature=feature)
    else:
        raise Exception('Plane value not recognised')

    bounds = max(max(ph))

    fig1, ax2 = gaussian_kernel(ph,
                                new_fig=False,
                                subplot=122,
                                xlims=xlims,
                                ylims=ylims)

    _view.common.plt.tight_layout(True)

    if kwargs['output_path'] is not None:
        fig = _view.common.save_plot(fig=ax1, **kwargs)

    return fig1, ax1
示例#2
0
def ph_diagram_tree(tree, new_fig=True, plane='xy', output_dir=None, **kwargs):
    """
    Generates a 2d figure (barcode) of the persistent homology
    of a tree as it has been computed by
    Topology.get_persistent_homology method.
    """
    if plane in ['xy', 'yx', 'zx', 'xz', 'yz', 'zy']:
        ph = _tm.methods.get_persistence_diagram(tree, dim=plane)
    else:
        raise Exception('Plane value not recognised')

    bounds = max(max(ph))

    for ip, p in enumerate(ph):

        ph[ip].append(_np.abs(p[0] - p[1]))

    ph.sort(key=lambda x: x[2])

    for ip, p in enumerate(ph):

        fig, ax = _view.tree(tree, new_fig=new_fig, subplot=121, plane=plane)

        c1 = _view.common.plt.Circle([tree.x[0], tree.y[0]], p[0], alpha=0.2)
        c2 = _view.common.plt.Circle([tree.x[0], tree.y[0]], p[1], alpha=0.2)

        ax.add_patch(c1)  # pylint: disable=no-member
        ax.add_patch(c2)  # pylint: disable=no-member

        fig, ax = _view.common.get_figure(new_fig=False, subplot=122)

        for ip1, p1 in enumerate(ph):
            if ip1 != ip:
                ax.scatter(p1[0], p1[1], c='b')
            else:
                ax.scatter(p1[0], p1[1], c='r', s=50)

        kwargs['title'] = kwargs.get('title', 'P.H. diagram')
        kwargs['xlabel'] = kwargs.get('xlabel', 'Birth')
        kwargs['ylabel'] = kwargs.get('ylabel', 'Death')

        _view.common.plot_style(fig, ax, **kwargs)

        _view.common.plt.plot([0, bounds], [0, bounds])

        if output_dir is not None:
            kwargs['output_path'] = output_dir
            kwargs['output_name'] = 'ph_' + '0' * (
                2 - len(str(len(tree.get_bifurcations()) - ip))) + str(
                    len(tree.get_bifurcations()) - ip) + '.png'

        _view.common.save_plot(fig, **kwargs)

        if output_dir is not None:
            kwargs['output_path'] = None
            kwargs['output_name'] = None
示例#3
0
def ph_on_tree(tree,
               new_fig=True,
               subplot=False,
               plane='xy',
               alpha=0.05,
               **kwargs):
    """
    Generates a 3d figure of the tree and adds
    the corresponding spheres that represent
    important events in the persistent homology
    diagram (birth and death of components).
    """
    # Initialization of matplotlib figure and axes.
    fig, ax = _view.tree(tree,
                         new_fig=new_fig,
                         subplot=subplot,
                         plane=plane,
                         **kwargs)

    if plane in ['xy', 'yx', 'zx', 'xz', 'yz', 'zy']:
        ph = _tm.methods.get_persistence_diagram(tree, dim=plane)
    else:
        raise Exception('Plane value not recognised')

    for p in ph:

        c1 = _view.common.plt.Circle([tree.x[0], tree.y[0], tree.z[0]],
                                     p[0],
                                     alpha=alpha)
        c2 = _view.common.plt.Circle([tree.x[0], tree.y[0], tree.z[0]],
                                     p[1],
                                     alpha=alpha)

        ax.add_patch(c1)  # pylint: disable=no-member
        ax.add_patch(c2)  # pylint: disable=no-member

    return _view.common.plot_style(fig=fig, ax=ax, **kwargs)
示例#4
0
def tree_instance(tree,
                  new_fig=True,
                  plane='xy',
                  component_num=1,
                  feature='radial_distances',
                  diameter=True,
                  col='r',
                  treecol='b',
                  **kwargs):
    '''Subplot with ph, barcode and tree within spheres
    '''
    from tmd import utils as _utils
    from matplotlib.collections import LineCollection

    if new_fig:
        fig1, ax1 = _view.tree(tree,
                               new_fig=new_fig,
                               subplot=121,
                               plane='xy',
                               title='',
                               treecolor=treecol,
                               diameter=diameter)
    else:
        fig1, ax1 = _view.common.get_figure(new_fig=new_fig, subplot=121)
    feat = getattr(tree, 'get_section_' + feature)()
    segs = tree.get_segments()

    def _seg_2d(seg):
        """2d coordinates required for the plotting of a segment"""

        horz = _utils.term_dict[plane[0]]
        vert = _utils.term_dict[plane[1]]

        horz1 = seg[0][horz]
        horz2 = seg[1][horz]
        vert1 = seg[0][vert]
        vert2 = seg[1][vert]

        return ((horz1, vert1), (horz2, vert2))

    if plane in ['xy', 'yx', 'zx', 'xz', 'yz', 'zy']:
        ph = _tm.methods.get_persistence_diagram(tree, feature=feature)
    else:
        raise Exception('Plane value not recognised')

    bounds = max(max(ph))

    if new_fig:
        fig1, ax2 = barcode(ph, new_fig=False, subplot=222, color=treecol)
        fig1, ax3 = ph_diagram(ph, new_fig=False, subplot=224, color=treecol)
    else:
        fig1, ax2 = _view.common.get_figure(new_fig=new_fig, subplot=222)
        fig1, ax3 = _view.common.get_figure(new_fig=new_fig, subplot=224)

    ph = sort_ph(ph)
    select_section = ph[component_num]

    ax2.plot(select_section[:-1], [component_num, component_num],
             color=col,
             linewidth=2.)
    ax3.scatter(select_section[0], select_section[1], color=col, s=50.)

    initial = _np.transpose(
        tree.get_sections())[_np.where(feat == select_section[0])[0]]
    all_way = _np.array(tree.get_way_to_root(initial[0][1]))

    if select_section[1] != -1:
        final = _np.transpose(
            tree.get_sections())[_np.where(feat == select_section[1])[0]]
        until = _np.array(tree.get_way_to_root(final[0][1]))
    else:
        until = _np.array(tree.get_way_to_root(0))

    between = _np.setxor1d(all_way, until)

    tmp_segs = _np.array(segs)[between]
    toplot_segs = [_seg_2d(seg) for seg in tmp_segs]
    linewidth = [2 * d * 2 for d in _np.array(tree.d)[between]]

    collection = LineCollection(toplot_segs,
                                color=col,
                                linewidth=linewidth,
                                alpha=1.)
    ax1.add_collection(collection)
    _view.common.plt.tight_layout(True)

    return ax1, collection