示例#1
0
def main():
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--bert_model",
        default="bert-base-uncased",
        type=str,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.",
    )
    parser.add_argument(
        "--from_pretrained",
        default="bert-base-uncased",
        type=str,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.",
    )
    parser.add_argument(
        "--output_dir",
        default="save",
        type=str,
        help=
        "The output directory where the model checkpoints will be written.",
    )
    parser.add_argument(
        "--config_file",
        default="config/bert_base_6layer_6conect.json",
        type=str,
        help="The config file which specified the model details.",
    )
    parser.add_argument(
        "--num_train_epochs",
        default=20,
        type=int,
        help="Total number of training epochs to perform.",
    )
    parser.add_argument(
        "--train_iter_multiplier",
        default=1.0,
        type=float,
        help="multiplier for the multi-task training.",
    )
    parser.add_argument(
        "--train_iter_gap",
        default=4,
        type=int,
        help=
        "forward every n iteration is the validation score is not improving over the last 3 epoch, -1 means will stop",
    )
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.",
    )
    parser.add_argument("--no_cuda",
                        action="store_true",
                        help="Whether not to use CUDA when available")
    parser.add_argument(
        "--do_lower_case",
        default=True,
        type=bool,
        help=
        "Whether to lower case the input text. True for uncased models, False for cased models.",
    )
    parser.add_argument(
        "--local_rank",
        type=int,
        default=-1,
        help="local_rank for distributed training on gpus",
    )
    parser.add_argument("--seed",
                        type=int,
                        default=0,
                        help="random seed for initialization")
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help=
        "Number of updates steps to accumualte before performing a backward/update pass.",
    )
    parser.add_argument(
        "--fp16",
        action="store_true",
        help="Whether to use 16-bit float precision instead of 32-bit",
    )
    parser.add_argument(
        "--loss_scale",
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n",
    )
    parser.add_argument(
        "--num_workers",
        type=int,
        default=0,
        help="Number of workers in the dataloader.",
    )
    parser.add_argument("--save_name",
                        default="",
                        type=str,
                        help="save name for training.")
    parser.add_argument(
        "--in_memory",
        default=False,
        type=bool,
        help="whether use chunck for parallel training.",
    )
    parser.add_argument("--optim",
                        default="AdamW",
                        type=str,
                        help="what to use for the optimization.")
    parser.add_argument("--tasks",
                        default="",
                        type=str,
                        help="1-2-3... training task separate by -")
    parser.add_argument(
        "--freeze",
        default=-1,
        type=int,
        help="till which layer of textual stream of vilbert need to fixed.",
    )
    parser.add_argument(
        "--vision_scratch",
        action="store_true",
        help="whether pre-trained the image or not.",
    )
    parser.add_argument("--evaluation_interval",
                        default=1,
                        type=int,
                        help="evaluate very n epoch.")
    parser.add_argument(
        "--lr_scheduler",
        default="mannul",
        type=str,
        help="whether use learning rate scheduler.",
    )
    parser.add_argument("--baseline",
                        action="store_true",
                        help="whether use single stream baseline.")
    parser.add_argument("--resume_file",
                        default="",
                        type=str,
                        help="Resume from checkpoint")
    parser.add_argument(
        "--dynamic_attention",
        action="store_true",
        help="whether use dynamic attention.",
    )
    parser.add_argument(
        "--clean_train_sets",
        default=True,
        type=bool,
        help="whether clean train sets for multitask data.",
    )
    parser.add_argument(
        "--visual_target",
        default=0,
        type=int,
        help="which target to use for visual branch. \
        0: soft label, \
        1: regress the feature, \
        2: NCE loss.",
    )
    parser.add_argument(
        "--task_specific_tokens",
        action="store_true",
        help="whether to use task specific tokens for the multi-task learning.",
    )

    args = parser.parse_args()
    with open("vilbert_tasks.yml", "r") as f:
        task_cfg = edict(yaml.safe_load(f))

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)

    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False

    if args.baseline:
        from pytorch_transformers.modeling_bert import BertConfig
        from vilbert.basebert import BaseBertForVLTasks
    else:
        from vilbert.vilbert import BertConfig
        from vilbert.vilbert import VILBertForVLTasks

    task_names = []
    task_lr = []
    for i, task_id in enumerate(args.tasks.split("-")):
        task = "TASK" + task_id
        name = task_cfg[task]["name"]
        task_names.append(name)
        task_lr.append(task_cfg[task]["lr"])

    base_lr = min(task_lr)
    loss_scale = {}
    for i, task_id in enumerate(args.tasks.split("-")):
        task = "TASK" + task_id
        loss_scale[task] = task_lr[i] / base_lr

    if args.save_name:
        prefix = "-" + args.save_name
    else:
        prefix = ""
    timeStamp = ("-".join(task_names) + "_" +
                 args.config_file.split("/")[1].split(".")[0] + prefix)
    savePath = os.path.join(args.output_dir, timeStamp)

    bert_weight_name = json.load(
        open("config/" + args.bert_model + "_weight_name.json", "r"))

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        torch.distributed.init_process_group(backend="nccl")

    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    default_gpu = False
    if dist.is_available() and args.local_rank != -1:
        rank = dist.get_rank()
        if rank == 0:
            default_gpu = True
    else:
        default_gpu = True

    if default_gpu:
        if not os.path.exists(savePath):
            os.makedirs(savePath)

    config = BertConfig.from_json_file(args.config_file)
    if default_gpu:
        # save all the hidden parameters.
        with open(os.path.join(savePath, "command.txt"), "w") as f:
            print(args, file=f)  # Python 3.x
            print("\n", file=f)
            print(config, file=f)

    task_batch_size, task_num_iters, task_ids, task_datasets_train, task_datasets_val, task_dataloader_train, task_dataloader_val = LoadDatasets(
        args, task_cfg, args.tasks.split("-"))

    logdir = os.path.join(savePath, "logs")
    tbLogger = utils.tbLogger(
        logdir,
        savePath,
        task_names,
        task_ids,
        task_num_iters,
        args.gradient_accumulation_steps,
    )

    if args.visual_target == 0:
        config.v_target_size = 1601
        config.visual_target = args.visual_target
    else:
        config.v_target_size = 2048
        config.visual_target = args.visual_target

    if args.task_specific_tokens:
        config.task_specific_tokens = True

    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    task_ave_iter = {}
    task_stop_controller = {}
    for task_id, num_iter in task_num_iters.items():
        task_ave_iter[task_id] = int(task_cfg[task]["num_epoch"] * num_iter *
                                     args.train_iter_multiplier /
                                     args.num_train_epochs)
        task_stop_controller[task_id] = utils.MultiTaskStopOnPlateau(
            mode="max",
            patience=1,
            continue_threshold=0.005,
            cooldown=1,
            threshold=0.001,
        )

    task_ave_iter_list = sorted(task_ave_iter.values())
    median_num_iter = task_ave_iter_list[-1]
    num_train_optimization_steps = (median_num_iter * args.num_train_epochs //
                                    args.gradient_accumulation_steps)
    num_labels = max(
        [dataset.num_labels for dataset in task_datasets_train.values()])

    if args.dynamic_attention:
        config.dynamic_attention = True
    if "roberta" in args.bert_model:
        config.model = "roberta"

    if args.baseline:
        model = BaseBertForVLTasks.from_pretrained(
            args.from_pretrained,
            config=config,
            num_labels=num_labels,
            default_gpu=default_gpu,
        )
    else:
        model = VILBertForVLTasks.from_pretrained(
            args.from_pretrained,
            config=config,
            num_labels=num_labels,
            default_gpu=default_gpu,
        )

    task_losses = LoadLosses(args, task_cfg, args.tasks.split("-"))

    no_decay = ["bias", "LayerNorm.bias", "LayerNorm.weight"]

    if args.freeze != -1:
        bert_weight_name_filtered = []
        for name in bert_weight_name:
            if "embeddings" in name:
                bert_weight_name_filtered.append(name)
            elif "encoder" in name:
                layer_num = name.split(".")[2]
                if int(layer_num) <= args.freeze:
                    bert_weight_name_filtered.append(name)

        optimizer_grouped_parameters = []
        for key, value in dict(model.named_parameters()).items():
            if key[12:] in bert_weight_name_filtered:
                value.requires_grad = False

        if default_gpu:
            print("filtered weight")
            print(bert_weight_name_filtered)

    optimizer_grouped_parameters = []
    for key, value in dict(model.named_parameters()).items():
        if value.requires_grad:
            if "vil_" in key:
                lr = 1e-4
            else:
                if args.vision_scratch:
                    if key[12:] in bert_weight_name:
                        lr = base_lr
                    else:
                        lr = 1e-4
                else:
                    lr = base_lr
            if any(nd in key for nd in no_decay):
                optimizer_grouped_parameters += [{
                    "params": [value],
                    "lr": lr,
                    "weight_decay": 0.0
                }]
            if not any(nd in key for nd in no_decay):
                optimizer_grouped_parameters += [{
                    "params": [value],
                    "lr": lr,
                    "weight_decay": 0.01
                }]

    if default_gpu:
        print(len(list(model.named_parameters())),
              len(optimizer_grouped_parameters))

    if args.optim == "AdamW":
        optimizer = AdamW(optimizer_grouped_parameters,
                          lr=base_lr,
                          correct_bias=False)
    elif args.optim == "RAdam":
        optimizer = RAdam(optimizer_grouped_parameters, lr=base_lr)

    warmpu_steps = args.warmup_proportion * num_train_optimization_steps

    if args.lr_scheduler == "warmup_linear":
        warmup_scheduler = WarmupLinearSchedule(
            optimizer,
            warmup_steps=warmpu_steps,
            t_total=num_train_optimization_steps)
    else:
        warmup_scheduler = WarmupConstantSchedule(optimizer,
                                                  warmup_steps=warmpu_steps)

    lr_reduce_list = np.array([5, 7])
    if args.lr_scheduler == "automatic":
        lr_scheduler = ReduceLROnPlateau(optimizer,
                                         mode="max",
                                         factor=0.2,
                                         patience=1,
                                         cooldown=1,
                                         threshold=0.001)
    elif args.lr_scheduler == "cosine":
        lr_scheduler = CosineAnnealingLR(optimizer,
                                         T_max=median_num_iter *
                                         args.num_train_epochs)
    elif args.lr_scheduler == "cosine_warm":
        lr_scheduler = CosineAnnealingWarmRestarts(optimizer,
                                                   T_0=median_num_iter *
                                                   args.num_train_epochs)
    elif args.lr_scheduler == "mannul":

        def lr_lambda_fun(epoch):
            return pow(0.2, np.sum(lr_reduce_list <= epoch))

        lr_scheduler = LambdaLR(optimizer, lr_lambda=lr_lambda_fun)

    startIterID = 0
    global_step = 0
    start_epoch = 0

    if args.resume_file != "" and os.path.exists(args.resume_file):
        checkpoint = torch.load(args.resume_file, map_location="cpu")
        new_dict = {}
        for attr in checkpoint["model_state_dict"]:
            if attr.startswith("module."):
                new_dict[attr.replace(
                    "module.", "", 1)] = checkpoint["model_state_dict"][attr]
            else:
                new_dict[attr] = checkpoint["model_state_dict"][attr]
        model.load_state_dict(new_dict)
        warmup_scheduler.load_state_dict(
            checkpoint["warmup_scheduler_state_dict"])
        # lr_scheduler.load_state_dict(checkpoint['lr_scheduler_state_dict'])
        optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
        global_step = checkpoint["global_step"]
        start_epoch = int(checkpoint["epoch_id"]) + 1
        task_stop_controller = checkpoint["task_stop_controller"]
        tbLogger = checkpoint["tb_logger"]
        del checkpoint

    model.to(device)

    for state in optimizer.state.values():
        for k, v in state.items():
            if torch.is_tensor(v):
                state[k] = v.cuda()


#    if args.local_rank != -1:
#        try:
#            from apex.parallel import DistributedDataParallel as DDP
#        except ImportError:
#            raise ImportError(
#                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
#            )
#        model = DDP(model, delay_allreduce=True)
#
#    elif n_gpu > 1:
#        model = torch.nn.DataParallel(model)

    if default_gpu:
        print("***** Running training *****")
        print("  Num Iters: ", task_num_iters)
        print("  Batch size: ", task_batch_size)
        print("  Num steps: %d" % num_train_optimization_steps)

    task_iter_train = {name: None for name in task_ids}
    task_count = {name: 0 for name in task_ids}
    for epochId in tqdm(range(start_epoch, args.num_train_epochs),
                        desc="Epoch"):
        model.train()
        torch.autograd.set_detect_anomaly(True)
        for step in range(median_num_iter):
            iterId = startIterID + step + (epochId * median_num_iter)
            first_task = True
            for task_id in task_ids:
                is_forward = False
                if (not task_stop_controller[task_id].in_stop) or (
                        iterId % args.train_iter_gap == 0):
                    is_forward = True

                if is_forward:
                    loss, score = ForwardModelsTrain(
                        args,
                        task_cfg,
                        device,
                        task_id,
                        task_count,
                        task_iter_train,
                        task_dataloader_train,
                        model,
                        task_losses,
                    )

                    loss = loss * loss_scale[task_id]
                    if args.gradient_accumulation_steps > 1:
                        loss = loss / args.gradient_accumulation_steps

                    loss.backward()
                    if (step + 1) % args.gradient_accumulation_steps == 0:
                        if args.fp16:
                            lr_this_step = args.learning_rate * warmup_linear(
                                global_step / num_train_optimization_steps,
                                args.warmup_proportion,
                            )
                            for param_group in optimizer.param_groups:
                                param_group["lr"] = lr_this_step

                        optimizer.step()
                        model.zero_grad()
                        if first_task and (global_step < warmpu_steps
                                           or args.lr_scheduler
                                           == "warmup_linear"):
                            warmup_scheduler.step()
                        if first_task:
                            global_step += 1
                            first_task = False

                        if default_gpu:
                            tbLogger.step_train(
                                epochId,
                                iterId,
                                float(loss),
                                float(score),
                                optimizer.param_groups[0]["lr"],
                                task_id,
                                "train",
                            )

            if "cosine" in args.lr_scheduler and global_step > warmpu_steps:
                lr_scheduler.step()

            if (step % (20 * args.gradient_accumulation_steps) == 0
                    and step != 0 and default_gpu):
                tbLogger.showLossTrain()

            # decided whether to evaluate on each tasks.
            for task_id in task_ids:
                if (iterId != 0 and iterId % task_num_iters[task_id]
                        == 0) or (epochId == args.num_train_epochs - 1
                                  and step == median_num_iter - 1):
                    evaluate(
                        args,
                        task_dataloader_val,
                        task_stop_controller,
                        task_cfg,
                        device,
                        task_id,
                        model,
                        task_losses,
                        epochId,
                        default_gpu,
                        tbLogger,
                    )

        if args.lr_scheduler == "automatic":
            lr_scheduler.step(sum(val_scores.values()))
            logger.info("best average score is %3f" % lr_scheduler.best)
        elif args.lr_scheduler == "mannul":
            lr_scheduler.step()

        if epochId in lr_reduce_list:
            for task_id in task_ids:
                # reset the task_stop_controller once the lr drop
                task_stop_controller[task_id]._reset()

        if default_gpu:
            # Save a trained model
            logger.info("** ** * Saving fine - tuned model ** ** * ")
            model_to_save = (
                model.module if hasattr(model, "module") else model
            )  # Only save the model it-self
            output_model_file = os.path.join(
                savePath, "pytorch_model_" + str(epochId) + ".bin")
            output_checkpoint = os.path.join(savePath,
                                             "pytorch_ckpt_latest.tar")
            torch.save(model_to_save.state_dict(), output_model_file)
            torch.save(
                {
                    "model_state_dict": model_to_save.state_dict(),
                    "optimizer_state_dict": optimizer.state_dict(),
                    "warmup_scheduler_state_dict":
                    warmup_scheduler.state_dict(),
                    # 'lr_scheduler_state_dict': lr_scheduler.state_dict(),
                    "global_step": global_step,
                    "epoch_id": epochId,
                    "task_stop_controller": task_stop_controller,
                    "tb_logger": tbLogger,
                },
                output_checkpoint,
            )
    tbLogger.txt_close()
def main():
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--bert_model",
        default="bert-base-uncased",
        type=str,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.",
    )
    parser.add_argument(
        "--from_pretrained",
        default="bert-base-uncased",
        type=str,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.",
    )
    parser.add_argument(
        "--output_dir",
        default="save",
        type=str,
        help=
        "The output directory where the model checkpoints will be written.",
    )
    parser.add_argument(
        "--config_file",
        default="config/bert_config.json",
        type=str,
        help="The config file which specified the model details.",
    )
    parser.add_argument("--learning_rate",
                        default=2e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument(
        "--num_train_epochs",
        default=20,
        type=int,
        help="Total number of training epochs to perform.",
    )
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.",
    )
    parser.add_argument("--no_cuda",
                        action="store_true",
                        help="Whether not to use CUDA when available")
    parser.add_argument(
        "--do_lower_case",
        default=True,
        type=bool,
        help=
        "Whether to lower case the input text. True for uncased models, False for cased models.",
    )
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument("--seed",
                        type=int,
                        default=0,
                        help="random seed for initialization")
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help=
        "Number of updates steps to accumualte before performing a backward/update pass.",
    )
    parser.add_argument(
        "--fp16",
        action="store_true",
        help="Whether to use 16-bit float precision instead of 32-bit",
    )
    parser.add_argument(
        "--loss_scale",
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n",
    )
    parser.add_argument("--num_workers",
                        type=int,
                        default=16,
                        help="Number of workers in the dataloader.")
    parser.add_argument(
        "--save_name",
        default='',
        type=str,
        help="save name for training.",
    )
    parser.add_argument("--use_chunk",
                        default=0,
                        type=float,
                        help="whether use chunck for parallel training.")
    parser.add_argument("--in_memory",
                        default=False,
                        type=bool,
                        help="whether use chunck for parallel training.")
    parser.add_argument("--optimizer",
                        default='BertAdam',
                        type=str,
                        help="whether use chunck for parallel training.")
    parser.add_argument("--tasks",
                        default='',
                        type=str,
                        help="1-2-3... training task separate by -")
    parser.add_argument(
        "--freeze",
        default=-1,
        type=int,
        help="till which layer of textual stream of vilbert need to fixed.")
    parser.add_argument("--vision_scratch",
                        action="store_true",
                        help="whether pre-trained the image or not.")
    parser.add_argument("--evaluation_interval",
                        default=1,
                        type=int,
                        help="evaluate very n epoch.")
    parser.add_argument("--lr_scheduler",
                        default='mannul',
                        type=str,
                        help="whether use learning rate scheduler.")
    parser.add_argument("--baseline",
                        action="store_true",
                        help="whether use single stream baseline.")
    parser.add_argument("--compact",
                        action="store_true",
                        help="whether use compact vilbert model.")
    parser.add_argument("--debug",
                        action="store_true",
                        help="whether in debug mode.")
    parser.add_argument(
        "--tensorboard_dir",
        default="tensorboard_log",
        type=str,
        help="The output directory where tensorboard log will be written.",
    )
    parser.add_argument(
        "--batch_size",
        default=-1,
        type=int,
        help="Custom Batch size for task.",
    )
    parser.add_argument(
        "--data_root",
        default="",
        type=str,
        help="The data root of the task.",
    )
    args = parser.parse_args()
    with open('vlbert_tasks.yml', 'r') as f:
        task_cfg = edict(yaml.load(f))

    # random.seed(args.seed)
    # np.random.seed(args.seed)
    # torch.manual_seed(args.seed)

    if args.baseline:
        from pytorch_pretrained_bert.modeling import BertConfig
        from vilbert.basebert import BaseBertForVLTasks
    elif args.compact:
        from vilbert.vilbert_compact import BertConfig
        from vilbert.vilbert_compact import VILBertForVLTasks
    else:
        from vilbert.vilbert import BertConfig
        from vilbert.vilbert import VILBertForVLTasks

    task_names = []
    task_lr = []
    for i, task_id in enumerate(args.tasks.split('-')):
        task = 'TASK' + task_id
        name = task_cfg[task]['name']
        task_names.append(name)
        task_lr.append(task_cfg[task]['lr'])

    base_lr = min(task_lr)
    loss_scale = {}
    for i, task_id in enumerate(args.tasks.split('-')):
        task = 'TASK' + task_id
        loss_scale[task] = task_lr[i] / base_lr

    if args.save_name:
        prefix = '-' + args.save_name
    else:
        prefix = ''
    timeStamp = '-'.join(task_names) + '_' + args.config_file.split(
        '/')[1].split('.')[0] + prefix
    savePath = os.path.join(args.output_dir, timeStamp)
    logPath = os.path.join(args.tensorboard_dir, timeStamp)

    if os.path.isdir(logPath):
        logger.error('Tensorboard Log path exists. Overwriting.')

    bert_weight_name = json.load(
        open("config/" + args.bert_model + "_weight_name.json", "r"))

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend="nccl")

    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    default_gpu = False
    if dist.is_available() and args.local_rank != -1:
        rank = dist.get_rank()
        if rank == 0:
            default_gpu = True
    else:
        default_gpu = True

    if default_gpu:
        if not os.path.exists(savePath):
            os.makedirs(savePath)

    config = BertConfig.from_json_file(args.config_file)
    if default_gpu:
        # save all the hidden parameters.
        with open(os.path.join(savePath, 'command.txt'), 'w') as f:
            print(args, file=f)  # Python 3.x
            print('\n', file=f)
            print(config, file=f)

    if args.batch_size != -1:
        for i, task_id in enumerate(args.tasks.split('-')):
            task = 'TASK' + task_id
            task_cfg[task]['batch_size'] = args.batch_size

    if args.data_root != "":
        for i, task_id in enumerate(args.tasks.split('-')):
            data_root = args.data_root
            task = 'TASK' + task_id
            task_cfg[task]['dataroot'] = data_root
            task_cfg[task]['features_h5path1'] = os.path.join(
                data_root, task_cfg[task]['features_h5path1'].split('/')[-1])
            task_cfg[task]['features_h5path2'] = os.path.join(
                data_root, task_cfg[task]['features_h5path2'].split('/')[-1])
            task_cfg[task]['train_annotations_jsonpath'] = os.path.join(
                data_root,
                task_cfg[task]['train_annotations_jsonpath'].split('/')[-1])
            task_cfg[task]['val_annotations_jsonpath'] = os.path.join(
                data_root,
                task_cfg[task]['val_annotations_jsonpath'].split('/')[-1])

    # Done it for VCR Dataset only, need to put this train_100.jsonl for other datasets
    if args.debug:
        for i, task_id in enumerate(args.tasks.split('-')):
            task = 'TASK' + task_id
            task_cfg[task]['train_annotations_jsonpath'] = '/'.join(
                task_cfg[task]['train_annotations_jsonpath'].split('/')[:-1] +
                ['train_100.jsonl'])
            task_cfg[task]['val_annotations_jsonpath'] = '/'.join(
                task_cfg[task]['val_annotations_jsonpath'].split('/')[:-1] +
                ['val_100.jsonl'])
            task_cfg[task]['batch_size'] = 2

    # Have added args.debug to only VCR Datasets (vcr_dataset.py) will need to add it to other dataset too.
    task_batch_size, task_num_iters, task_ids, task_datasets_train, task_datasets_val, \
            task_dataloader_train, task_dataloader_val = LoadDatasets(args, task_cfg, args.tasks.split('-'), args.debug)

    tbLogger = utils.tbLogger(logPath, savePath, task_names, task_ids,
                              task_num_iters, args.gradient_accumulation_steps)

    # if n_gpu > 0:
    # torch.cuda.manual_seed_all(args.seed)

    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    num_train_optimization_steps = max(task_num_iters.values(
    )) * args.num_train_epochs // args.gradient_accumulation_steps
    num_labels = max(
        [dataset.num_labels for dataset in task_datasets_train.values()])

    task_start_iter = {}
    task_interval = {}
    for task_id, num_iter in task_num_iters.items():
        task_start_iter[task_id] = num_train_optimization_steps - (
            task_cfg[task]['num_epoch'] * num_iter //
            args.gradient_accumulation_steps)
        task_interval[task_id] = num_train_optimization_steps // (
            task_cfg[task]['num_epoch'] * num_iter //
            args.gradient_accumulation_steps)

    if args.baseline:
        model = BaseBertForVLTasks.from_pretrained(args.from_pretrained,
                                                   config,
                                                   num_labels=num_labels,
                                                   default_gpu=default_gpu)
    else:
        model = VILBertForVLTasks.from_pretrained(args.from_pretrained,
                                                  config,
                                                  num_labels=num_labels,
                                                  default_gpu=default_gpu)

    task_losses = LoadLosses(args, task_cfg, args.tasks.split('-'))
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )
        model = DDP(model, delay_allreduce=True)

    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    no_decay = ["bias", "LayerNorm.bias", "LayerNorm.weight"]

    if args.freeze != -1:
        bert_weight_name_filtered = []
        for name in bert_weight_name:
            if 'embeddings' in name:
                bert_weight_name_filtered.append(name)
            elif 'encoder' in name:
                layer_num = name.split('.')[2]
                if int(layer_num) <= args.freeze:
                    bert_weight_name_filtered.append(name)

        optimizer_grouped_parameters = []
        for key, value in dict(model.named_parameters()).items():
            if key[12:] in bert_weight_name_filtered:
                value.requires_grad = False

        if default_gpu:
            print("filtered weight")
            print(bert_weight_name_filtered)

    optimizer_grouped_parameters = []
    lr = args.learning_rate
    for key, value in dict(model.named_parameters()).items():
        if value.requires_grad:
            if 'vil_prediction' in key:
                # if args.learning_rate <= 2e-5:
                lr = 1e-4
            else:
                if args.vision_scratch:
                    if key[12:] in bert_weight_name:
                        lr = args.learning_rate
                    else:
                        lr = 1e-4
                else:
                    lr = args.learning_rate
            if any(nd in key for nd in no_decay):
                optimizer_grouped_parameters += [{
                    "params": [value],
                    "lr": lr,
                    "weight_decay": 0.01
                }]
            if not any(nd in key for nd in no_decay):
                optimizer_grouped_parameters += [{
                    "params": [value],
                    "lr": lr,
                    "weight_decay": 0.0
                }]

    if default_gpu:
        print(len(list(model.named_parameters())),
              len(optimizer_grouped_parameters))

    max_num_iter = max(task_num_iters.values())
    max_batch_size = max(task_batch_size.values())

    if args.optimizer == 'BertAdam':
        optimizer = BertAdam(
            optimizer_grouped_parameters,
            lr=args.learning_rate,
            warmup=args.warmup_proportion,
            t_total=num_train_optimization_steps,
            schedule='warmup_constant',
        )
    elif args.optimizer == 'Adam':
        optimizer = Adam(
            optimizer_grouped_parameters,
            lr=base_lr,
            warmup=args.warmup_proportion,
            t_total=num_train_optimization_steps,
            schedule='warmup_constant',
        )
    elif args.optimizer == 'Adamax':
        optimizer = Adamax(
            optimizer_grouped_parameters,
            lr=base_lr,
            warmup=args.warmup_proportion,
            t_total=num_train_optimization_steps,
            schedule='warmup_constant',
        )

    if args.lr_scheduler == 'automatic':
        lr_scheduler = ReduceLROnPlateau(optimizer, \
                        mode='max',
                        factor=0.2,
                        patience=1,
                        cooldown=1,
                        threshold=0.001)
    elif args.lr_scheduler == 'mannul':
        lr_reduce_list = np.array([12, 16])

        # lr_reduce_list = np.array([6, 8, 10])
        def lr_lambda_fun(epoch):
            return pow(0.1, np.sum(lr_reduce_list <= epoch))

        lr_scheduler = LambdaLR(optimizer, lr_lambda=lr_lambda_fun)

    if default_gpu:
        print("***** Running training *****")
        print("  Num Iters: ", task_num_iters)
        print("  Batch size: ", task_batch_size)
        print("  Num steps: %d" % num_train_optimization_steps)

    startIterID = 0
    # initialize the data iteration.
    task_iter_train = {name: None for name in task_ids}
    task_count = {name: 0 for name in task_ids}
    for epochId in tqdm(range(args.num_train_epochs), desc="Epoch"):
        model.train()
        for step in range(max_num_iter):
            iterId = startIterID + step + (epochId * max_num_iter)
            for task_id in task_ids:
                if iterId >= task_start_iter[task_id]:
                    # if iterId % task_interval[task_id] == 0:
                    loss, score = ForwardModelsTrain(args, task_cfg, device,
                                                     task_id, task_count,
                                                     task_iter_train,
                                                     task_dataloader_train,
                                                     model, task_losses,
                                                     task_start_iter)
                    loss = loss * loss_scale[task_id]
                    if args.gradient_accumulation_steps > 1:
                        loss = loss / args.gradient_accumulation_steps

                    loss.backward()
                    if (step + 1) % args.gradient_accumulation_steps == 0:
                        optimizer.step()
                        model.zero_grad()

                        if default_gpu:
                            tbLogger.step_train(epochId, iterId, float(loss),
                                                float(score),
                                                optimizer.show_lr(), task_id,
                                                'train')

            if step % (20 * args.gradient_accumulation_steps
                       ) == 0 and step != 0 and default_gpu:
                tbLogger.showLossTrain()

        model.eval()
        # when run evaluate, we run each task sequentially.
        for task_id in task_ids:
            for i, batch in enumerate(task_dataloader_val[task_id]):
                loss, score, batch_size = ForwardModelsVal(
                    args, task_cfg, device, task_id, batch, model, task_losses)
                tbLogger.step_val(epochId, float(loss), float(score), task_id,
                                  batch_size, 'val')
                if default_gpu:
                    sys.stdout.write('%d/%d\r' %
                                     (i, len(task_dataloader_val[task_id])))
                    sys.stdout.flush()

        ave_score = tbLogger.showLossVal()
        if args.lr_scheduler == 'automatic':
            lr_scheduler.step(ave_score)
            logger.info("best average score is %3f" % lr_scheduler.best)
        else:
            lr_scheduler.step()

        if default_gpu:
            # Save a trained model
            logger.info("** ** * Saving fine - tuned model on " + logPath +
                        "** ** * ")
            model_to_save = (
                model.module if hasattr(model, "module") else model
            )  # Only save the model it-self

            if not os.path.exists(savePath):
                os.makedirs(savePath)
            output_model_file = os.path.join(
                savePath, "pytorch_model_" + str(epochId) + ".bin")
            torch.save(model_to_save.state_dict(), output_model_file)

    tbLogger.txt_close()