def main(): parser = argparse.ArgumentParser() parser.add_argument( "--bert_model", default="bert-base-uncased", type=str, help="Bert pre-trained model selected in the list: bert-base-uncased, " "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.", ) parser.add_argument( "--from_pretrained", default="bert-base-uncased", type=str, help="Bert pre-trained model selected in the list: bert-base-uncased, " "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.", ) parser.add_argument( "--output_dir", default="save", type=str, help= "The output directory where the model checkpoints will be written.", ) parser.add_argument( "--config_file", default="config/bert_base_6layer_6conect.json", type=str, help="The config file which specified the model details.", ) parser.add_argument( "--num_train_epochs", default=20, type=int, help="Total number of training epochs to perform.", ) parser.add_argument( "--train_iter_multiplier", default=1.0, type=float, help="multiplier for the multi-task training.", ) parser.add_argument( "--train_iter_gap", default=4, type=int, help= "forward every n iteration is the validation score is not improving over the last 3 epoch, -1 means will stop", ) parser.add_argument( "--warmup_proportion", default=0.1, type=float, help= "Proportion of training to perform linear learning rate warmup for. " "E.g., 0.1 = 10%% of training.", ) parser.add_argument("--no_cuda", action="store_true", help="Whether not to use CUDA when available") parser.add_argument( "--do_lower_case", default=True, type=bool, help= "Whether to lower case the input text. True for uncased models, False for cased models.", ) parser.add_argument( "--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus", ) parser.add_argument("--seed", type=int, default=0, help="random seed for initialization") parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help= "Number of updates steps to accumualte before performing a backward/update pass.", ) parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit float precision instead of 32-bit", ) parser.add_argument( "--loss_scale", type=float, default=0, help= "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n" "0 (default value): dynamic loss scaling.\n" "Positive power of 2: static loss scaling value.\n", ) parser.add_argument( "--num_workers", type=int, default=0, help="Number of workers in the dataloader.", ) parser.add_argument("--save_name", default="", type=str, help="save name for training.") parser.add_argument( "--in_memory", default=False, type=bool, help="whether use chunck for parallel training.", ) parser.add_argument("--optim", default="AdamW", type=str, help="what to use for the optimization.") parser.add_argument("--tasks", default="", type=str, help="1-2-3... training task separate by -") parser.add_argument( "--freeze", default=-1, type=int, help="till which layer of textual stream of vilbert need to fixed.", ) parser.add_argument( "--vision_scratch", action="store_true", help="whether pre-trained the image or not.", ) parser.add_argument("--evaluation_interval", default=1, type=int, help="evaluate very n epoch.") parser.add_argument( "--lr_scheduler", default="mannul", type=str, help="whether use learning rate scheduler.", ) parser.add_argument("--baseline", action="store_true", help="whether use single stream baseline.") parser.add_argument("--resume_file", default="", type=str, help="Resume from checkpoint") parser.add_argument( "--dynamic_attention", action="store_true", help="whether use dynamic attention.", ) parser.add_argument( "--clean_train_sets", default=True, type=bool, help="whether clean train sets for multitask data.", ) parser.add_argument( "--visual_target", default=0, type=int, help="which target to use for visual branch. \ 0: soft label, \ 1: regress the feature, \ 2: NCE loss.", ) parser.add_argument( "--task_specific_tokens", action="store_true", help="whether to use task specific tokens for the multi-task learning.", ) args = parser.parse_args() with open("vilbert_tasks.yml", "r") as f: task_cfg = edict(yaml.safe_load(f)) random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False if args.baseline: from pytorch_transformers.modeling_bert import BertConfig from vilbert.basebert import BaseBertForVLTasks else: from vilbert.vilbert import BertConfig from vilbert.vilbert import VILBertForVLTasks task_names = [] task_lr = [] for i, task_id in enumerate(args.tasks.split("-")): task = "TASK" + task_id name = task_cfg[task]["name"] task_names.append(name) task_lr.append(task_cfg[task]["lr"]) base_lr = min(task_lr) loss_scale = {} for i, task_id in enumerate(args.tasks.split("-")): task = "TASK" + task_id loss_scale[task] = task_lr[i] / base_lr if args.save_name: prefix = "-" + args.save_name else: prefix = "" timeStamp = ("-".join(task_names) + "_" + args.config_file.split("/")[1].split(".")[0] + prefix) savePath = os.path.join(args.output_dir, timeStamp) bert_weight_name = json.load( open("config/" + args.bert_model + "_weight_name.json", "r")) if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") n_gpu = torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) n_gpu = 1 torch.distributed.init_process_group(backend="nccl") logger.info( "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}". format(device, n_gpu, bool(args.local_rank != -1), args.fp16)) default_gpu = False if dist.is_available() and args.local_rank != -1: rank = dist.get_rank() if rank == 0: default_gpu = True else: default_gpu = True if default_gpu: if not os.path.exists(savePath): os.makedirs(savePath) config = BertConfig.from_json_file(args.config_file) if default_gpu: # save all the hidden parameters. with open(os.path.join(savePath, "command.txt"), "w") as f: print(args, file=f) # Python 3.x print("\n", file=f) print(config, file=f) task_batch_size, task_num_iters, task_ids, task_datasets_train, task_datasets_val, task_dataloader_train, task_dataloader_val = LoadDatasets( args, task_cfg, args.tasks.split("-")) logdir = os.path.join(savePath, "logs") tbLogger = utils.tbLogger( logdir, savePath, task_names, task_ids, task_num_iters, args.gradient_accumulation_steps, ) if args.visual_target == 0: config.v_target_size = 1601 config.visual_target = args.visual_target else: config.v_target_size = 2048 config.visual_target = args.visual_target if args.task_specific_tokens: config.task_specific_tokens = True if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) task_ave_iter = {} task_stop_controller = {} for task_id, num_iter in task_num_iters.items(): task_ave_iter[task_id] = int(task_cfg[task]["num_epoch"] * num_iter * args.train_iter_multiplier / args.num_train_epochs) task_stop_controller[task_id] = utils.MultiTaskStopOnPlateau( mode="max", patience=1, continue_threshold=0.005, cooldown=1, threshold=0.001, ) task_ave_iter_list = sorted(task_ave_iter.values()) median_num_iter = task_ave_iter_list[-1] num_train_optimization_steps = (median_num_iter * args.num_train_epochs // args.gradient_accumulation_steps) num_labels = max( [dataset.num_labels for dataset in task_datasets_train.values()]) if args.dynamic_attention: config.dynamic_attention = True if "roberta" in args.bert_model: config.model = "roberta" if args.baseline: model = BaseBertForVLTasks.from_pretrained( args.from_pretrained, config=config, num_labels=num_labels, default_gpu=default_gpu, ) else: model = VILBertForVLTasks.from_pretrained( args.from_pretrained, config=config, num_labels=num_labels, default_gpu=default_gpu, ) task_losses = LoadLosses(args, task_cfg, args.tasks.split("-")) no_decay = ["bias", "LayerNorm.bias", "LayerNorm.weight"] if args.freeze != -1: bert_weight_name_filtered = [] for name in bert_weight_name: if "embeddings" in name: bert_weight_name_filtered.append(name) elif "encoder" in name: layer_num = name.split(".")[2] if int(layer_num) <= args.freeze: bert_weight_name_filtered.append(name) optimizer_grouped_parameters = [] for key, value in dict(model.named_parameters()).items(): if key[12:] in bert_weight_name_filtered: value.requires_grad = False if default_gpu: print("filtered weight") print(bert_weight_name_filtered) optimizer_grouped_parameters = [] for key, value in dict(model.named_parameters()).items(): if value.requires_grad: if "vil_" in key: lr = 1e-4 else: if args.vision_scratch: if key[12:] in bert_weight_name: lr = base_lr else: lr = 1e-4 else: lr = base_lr if any(nd in key for nd in no_decay): optimizer_grouped_parameters += [{ "params": [value], "lr": lr, "weight_decay": 0.0 }] if not any(nd in key for nd in no_decay): optimizer_grouped_parameters += [{ "params": [value], "lr": lr, "weight_decay": 0.01 }] if default_gpu: print(len(list(model.named_parameters())), len(optimizer_grouped_parameters)) if args.optim == "AdamW": optimizer = AdamW(optimizer_grouped_parameters, lr=base_lr, correct_bias=False) elif args.optim == "RAdam": optimizer = RAdam(optimizer_grouped_parameters, lr=base_lr) warmpu_steps = args.warmup_proportion * num_train_optimization_steps if args.lr_scheduler == "warmup_linear": warmup_scheduler = WarmupLinearSchedule( optimizer, warmup_steps=warmpu_steps, t_total=num_train_optimization_steps) else: warmup_scheduler = WarmupConstantSchedule(optimizer, warmup_steps=warmpu_steps) lr_reduce_list = np.array([5, 7]) if args.lr_scheduler == "automatic": lr_scheduler = ReduceLROnPlateau(optimizer, mode="max", factor=0.2, patience=1, cooldown=1, threshold=0.001) elif args.lr_scheduler == "cosine": lr_scheduler = CosineAnnealingLR(optimizer, T_max=median_num_iter * args.num_train_epochs) elif args.lr_scheduler == "cosine_warm": lr_scheduler = CosineAnnealingWarmRestarts(optimizer, T_0=median_num_iter * args.num_train_epochs) elif args.lr_scheduler == "mannul": def lr_lambda_fun(epoch): return pow(0.2, np.sum(lr_reduce_list <= epoch)) lr_scheduler = LambdaLR(optimizer, lr_lambda=lr_lambda_fun) startIterID = 0 global_step = 0 start_epoch = 0 if args.resume_file != "" and os.path.exists(args.resume_file): checkpoint = torch.load(args.resume_file, map_location="cpu") new_dict = {} for attr in checkpoint["model_state_dict"]: if attr.startswith("module."): new_dict[attr.replace( "module.", "", 1)] = checkpoint["model_state_dict"][attr] else: new_dict[attr] = checkpoint["model_state_dict"][attr] model.load_state_dict(new_dict) warmup_scheduler.load_state_dict( checkpoint["warmup_scheduler_state_dict"]) # lr_scheduler.load_state_dict(checkpoint['lr_scheduler_state_dict']) optimizer.load_state_dict(checkpoint["optimizer_state_dict"]) global_step = checkpoint["global_step"] start_epoch = int(checkpoint["epoch_id"]) + 1 task_stop_controller = checkpoint["task_stop_controller"] tbLogger = checkpoint["tb_logger"] del checkpoint model.to(device) for state in optimizer.state.values(): for k, v in state.items(): if torch.is_tensor(v): state[k] = v.cuda() # if args.local_rank != -1: # try: # from apex.parallel import DistributedDataParallel as DDP # except ImportError: # raise ImportError( # "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training." # ) # model = DDP(model, delay_allreduce=True) # # elif n_gpu > 1: # model = torch.nn.DataParallel(model) if default_gpu: print("***** Running training *****") print(" Num Iters: ", task_num_iters) print(" Batch size: ", task_batch_size) print(" Num steps: %d" % num_train_optimization_steps) task_iter_train = {name: None for name in task_ids} task_count = {name: 0 for name in task_ids} for epochId in tqdm(range(start_epoch, args.num_train_epochs), desc="Epoch"): model.train() torch.autograd.set_detect_anomaly(True) for step in range(median_num_iter): iterId = startIterID + step + (epochId * median_num_iter) first_task = True for task_id in task_ids: is_forward = False if (not task_stop_controller[task_id].in_stop) or ( iterId % args.train_iter_gap == 0): is_forward = True if is_forward: loss, score = ForwardModelsTrain( args, task_cfg, device, task_id, task_count, task_iter_train, task_dataloader_train, model, task_losses, ) loss = loss * loss_scale[task_id] if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps loss.backward() if (step + 1) % args.gradient_accumulation_steps == 0: if args.fp16: lr_this_step = args.learning_rate * warmup_linear( global_step / num_train_optimization_steps, args.warmup_proportion, ) for param_group in optimizer.param_groups: param_group["lr"] = lr_this_step optimizer.step() model.zero_grad() if first_task and (global_step < warmpu_steps or args.lr_scheduler == "warmup_linear"): warmup_scheduler.step() if first_task: global_step += 1 first_task = False if default_gpu: tbLogger.step_train( epochId, iterId, float(loss), float(score), optimizer.param_groups[0]["lr"], task_id, "train", ) if "cosine" in args.lr_scheduler and global_step > warmpu_steps: lr_scheduler.step() if (step % (20 * args.gradient_accumulation_steps) == 0 and step != 0 and default_gpu): tbLogger.showLossTrain() # decided whether to evaluate on each tasks. for task_id in task_ids: if (iterId != 0 and iterId % task_num_iters[task_id] == 0) or (epochId == args.num_train_epochs - 1 and step == median_num_iter - 1): evaluate( args, task_dataloader_val, task_stop_controller, task_cfg, device, task_id, model, task_losses, epochId, default_gpu, tbLogger, ) if args.lr_scheduler == "automatic": lr_scheduler.step(sum(val_scores.values())) logger.info("best average score is %3f" % lr_scheduler.best) elif args.lr_scheduler == "mannul": lr_scheduler.step() if epochId in lr_reduce_list: for task_id in task_ids: # reset the task_stop_controller once the lr drop task_stop_controller[task_id]._reset() if default_gpu: # Save a trained model logger.info("** ** * Saving fine - tuned model ** ** * ") model_to_save = ( model.module if hasattr(model, "module") else model ) # Only save the model it-self output_model_file = os.path.join( savePath, "pytorch_model_" + str(epochId) + ".bin") output_checkpoint = os.path.join(savePath, "pytorch_ckpt_latest.tar") torch.save(model_to_save.state_dict(), output_model_file) torch.save( { "model_state_dict": model_to_save.state_dict(), "optimizer_state_dict": optimizer.state_dict(), "warmup_scheduler_state_dict": warmup_scheduler.state_dict(), # 'lr_scheduler_state_dict': lr_scheduler.state_dict(), "global_step": global_step, "epoch_id": epochId, "task_stop_controller": task_stop_controller, "tb_logger": tbLogger, }, output_checkpoint, ) tbLogger.txt_close()
def main(): parser = argparse.ArgumentParser() parser.add_argument( "--bert_model", default="bert-base-uncased", type=str, help="Bert pre-trained model selected in the list: bert-base-uncased, " "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.", ) parser.add_argument( "--from_pretrained", default="bert-base-uncased", type=str, help="Bert pre-trained model selected in the list: bert-base-uncased, " "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.", ) parser.add_argument( "--output_dir", default="save", type=str, help= "The output directory where the model checkpoints will be written.", ) parser.add_argument( "--config_file", default="config/bert_config.json", type=str, help="The config file which specified the model details.", ) parser.add_argument("--learning_rate", default=2e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument( "--num_train_epochs", default=20, type=int, help="Total number of training epochs to perform.", ) parser.add_argument( "--warmup_proportion", default=0.1, type=float, help= "Proportion of training to perform linear learning rate warmup for. " "E.g., 0.1 = 10%% of training.", ) parser.add_argument("--no_cuda", action="store_true", help="Whether not to use CUDA when available") parser.add_argument( "--do_lower_case", default=True, type=bool, help= "Whether to lower case the input text. True for uncased models, False for cased models.", ) parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus") parser.add_argument("--seed", type=int, default=0, help="random seed for initialization") parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help= "Number of updates steps to accumualte before performing a backward/update pass.", ) parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit float precision instead of 32-bit", ) parser.add_argument( "--loss_scale", type=float, default=0, help= "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n" "0 (default value): dynamic loss scaling.\n" "Positive power of 2: static loss scaling value.\n", ) parser.add_argument("--num_workers", type=int, default=16, help="Number of workers in the dataloader.") parser.add_argument( "--save_name", default='', type=str, help="save name for training.", ) parser.add_argument("--use_chunk", default=0, type=float, help="whether use chunck for parallel training.") parser.add_argument("--in_memory", default=False, type=bool, help="whether use chunck for parallel training.") parser.add_argument("--optimizer", default='BertAdam', type=str, help="whether use chunck for parallel training.") parser.add_argument("--tasks", default='', type=str, help="1-2-3... training task separate by -") parser.add_argument( "--freeze", default=-1, type=int, help="till which layer of textual stream of vilbert need to fixed.") parser.add_argument("--vision_scratch", action="store_true", help="whether pre-trained the image or not.") parser.add_argument("--evaluation_interval", default=1, type=int, help="evaluate very n epoch.") parser.add_argument("--lr_scheduler", default='mannul', type=str, help="whether use learning rate scheduler.") parser.add_argument("--baseline", action="store_true", help="whether use single stream baseline.") parser.add_argument("--compact", action="store_true", help="whether use compact vilbert model.") parser.add_argument("--debug", action="store_true", help="whether in debug mode.") parser.add_argument( "--tensorboard_dir", default="tensorboard_log", type=str, help="The output directory where tensorboard log will be written.", ) parser.add_argument( "--batch_size", default=-1, type=int, help="Custom Batch size for task.", ) parser.add_argument( "--data_root", default="", type=str, help="The data root of the task.", ) args = parser.parse_args() with open('vlbert_tasks.yml', 'r') as f: task_cfg = edict(yaml.load(f)) # random.seed(args.seed) # np.random.seed(args.seed) # torch.manual_seed(args.seed) if args.baseline: from pytorch_pretrained_bert.modeling import BertConfig from vilbert.basebert import BaseBertForVLTasks elif args.compact: from vilbert.vilbert_compact import BertConfig from vilbert.vilbert_compact import VILBertForVLTasks else: from vilbert.vilbert import BertConfig from vilbert.vilbert import VILBertForVLTasks task_names = [] task_lr = [] for i, task_id in enumerate(args.tasks.split('-')): task = 'TASK' + task_id name = task_cfg[task]['name'] task_names.append(name) task_lr.append(task_cfg[task]['lr']) base_lr = min(task_lr) loss_scale = {} for i, task_id in enumerate(args.tasks.split('-')): task = 'TASK' + task_id loss_scale[task] = task_lr[i] / base_lr if args.save_name: prefix = '-' + args.save_name else: prefix = '' timeStamp = '-'.join(task_names) + '_' + args.config_file.split( '/')[1].split('.')[0] + prefix savePath = os.path.join(args.output_dir, timeStamp) logPath = os.path.join(args.tensorboard_dir, timeStamp) if os.path.isdir(logPath): logger.error('Tensorboard Log path exists. Overwriting.') bert_weight_name = json.load( open("config/" + args.bert_model + "_weight_name.json", "r")) if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") n_gpu = torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) n_gpu = 1 # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.distributed.init_process_group(backend="nccl") logger.info( "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}". format(device, n_gpu, bool(args.local_rank != -1), args.fp16)) default_gpu = False if dist.is_available() and args.local_rank != -1: rank = dist.get_rank() if rank == 0: default_gpu = True else: default_gpu = True if default_gpu: if not os.path.exists(savePath): os.makedirs(savePath) config = BertConfig.from_json_file(args.config_file) if default_gpu: # save all the hidden parameters. with open(os.path.join(savePath, 'command.txt'), 'w') as f: print(args, file=f) # Python 3.x print('\n', file=f) print(config, file=f) if args.batch_size != -1: for i, task_id in enumerate(args.tasks.split('-')): task = 'TASK' + task_id task_cfg[task]['batch_size'] = args.batch_size if args.data_root != "": for i, task_id in enumerate(args.tasks.split('-')): data_root = args.data_root task = 'TASK' + task_id task_cfg[task]['dataroot'] = data_root task_cfg[task]['features_h5path1'] = os.path.join( data_root, task_cfg[task]['features_h5path1'].split('/')[-1]) task_cfg[task]['features_h5path2'] = os.path.join( data_root, task_cfg[task]['features_h5path2'].split('/')[-1]) task_cfg[task]['train_annotations_jsonpath'] = os.path.join( data_root, task_cfg[task]['train_annotations_jsonpath'].split('/')[-1]) task_cfg[task]['val_annotations_jsonpath'] = os.path.join( data_root, task_cfg[task]['val_annotations_jsonpath'].split('/')[-1]) # Done it for VCR Dataset only, need to put this train_100.jsonl for other datasets if args.debug: for i, task_id in enumerate(args.tasks.split('-')): task = 'TASK' + task_id task_cfg[task]['train_annotations_jsonpath'] = '/'.join( task_cfg[task]['train_annotations_jsonpath'].split('/')[:-1] + ['train_100.jsonl']) task_cfg[task]['val_annotations_jsonpath'] = '/'.join( task_cfg[task]['val_annotations_jsonpath'].split('/')[:-1] + ['val_100.jsonl']) task_cfg[task]['batch_size'] = 2 # Have added args.debug to only VCR Datasets (vcr_dataset.py) will need to add it to other dataset too. task_batch_size, task_num_iters, task_ids, task_datasets_train, task_datasets_val, \ task_dataloader_train, task_dataloader_val = LoadDatasets(args, task_cfg, args.tasks.split('-'), args.debug) tbLogger = utils.tbLogger(logPath, savePath, task_names, task_ids, task_num_iters, args.gradient_accumulation_steps) # if n_gpu > 0: # torch.cuda.manual_seed_all(args.seed) if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) num_train_optimization_steps = max(task_num_iters.values( )) * args.num_train_epochs // args.gradient_accumulation_steps num_labels = max( [dataset.num_labels for dataset in task_datasets_train.values()]) task_start_iter = {} task_interval = {} for task_id, num_iter in task_num_iters.items(): task_start_iter[task_id] = num_train_optimization_steps - ( task_cfg[task]['num_epoch'] * num_iter // args.gradient_accumulation_steps) task_interval[task_id] = num_train_optimization_steps // ( task_cfg[task]['num_epoch'] * num_iter // args.gradient_accumulation_steps) if args.baseline: model = BaseBertForVLTasks.from_pretrained(args.from_pretrained, config, num_labels=num_labels, default_gpu=default_gpu) else: model = VILBertForVLTasks.from_pretrained(args.from_pretrained, config, num_labels=num_labels, default_gpu=default_gpu) task_losses = LoadLosses(args, task_cfg, args.tasks.split('-')) model.to(device) if args.local_rank != -1: try: from apex.parallel import DistributedDataParallel as DDP except ImportError: raise ImportError( "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training." ) model = DDP(model, delay_allreduce=True) elif n_gpu > 1: model = torch.nn.DataParallel(model) no_decay = ["bias", "LayerNorm.bias", "LayerNorm.weight"] if args.freeze != -1: bert_weight_name_filtered = [] for name in bert_weight_name: if 'embeddings' in name: bert_weight_name_filtered.append(name) elif 'encoder' in name: layer_num = name.split('.')[2] if int(layer_num) <= args.freeze: bert_weight_name_filtered.append(name) optimizer_grouped_parameters = [] for key, value in dict(model.named_parameters()).items(): if key[12:] in bert_weight_name_filtered: value.requires_grad = False if default_gpu: print("filtered weight") print(bert_weight_name_filtered) optimizer_grouped_parameters = [] lr = args.learning_rate for key, value in dict(model.named_parameters()).items(): if value.requires_grad: if 'vil_prediction' in key: # if args.learning_rate <= 2e-5: lr = 1e-4 else: if args.vision_scratch: if key[12:] in bert_weight_name: lr = args.learning_rate else: lr = 1e-4 else: lr = args.learning_rate if any(nd in key for nd in no_decay): optimizer_grouped_parameters += [{ "params": [value], "lr": lr, "weight_decay": 0.01 }] if not any(nd in key for nd in no_decay): optimizer_grouped_parameters += [{ "params": [value], "lr": lr, "weight_decay": 0.0 }] if default_gpu: print(len(list(model.named_parameters())), len(optimizer_grouped_parameters)) max_num_iter = max(task_num_iters.values()) max_batch_size = max(task_batch_size.values()) if args.optimizer == 'BertAdam': optimizer = BertAdam( optimizer_grouped_parameters, lr=args.learning_rate, warmup=args.warmup_proportion, t_total=num_train_optimization_steps, schedule='warmup_constant', ) elif args.optimizer == 'Adam': optimizer = Adam( optimizer_grouped_parameters, lr=base_lr, warmup=args.warmup_proportion, t_total=num_train_optimization_steps, schedule='warmup_constant', ) elif args.optimizer == 'Adamax': optimizer = Adamax( optimizer_grouped_parameters, lr=base_lr, warmup=args.warmup_proportion, t_total=num_train_optimization_steps, schedule='warmup_constant', ) if args.lr_scheduler == 'automatic': lr_scheduler = ReduceLROnPlateau(optimizer, \ mode='max', factor=0.2, patience=1, cooldown=1, threshold=0.001) elif args.lr_scheduler == 'mannul': lr_reduce_list = np.array([12, 16]) # lr_reduce_list = np.array([6, 8, 10]) def lr_lambda_fun(epoch): return pow(0.1, np.sum(lr_reduce_list <= epoch)) lr_scheduler = LambdaLR(optimizer, lr_lambda=lr_lambda_fun) if default_gpu: print("***** Running training *****") print(" Num Iters: ", task_num_iters) print(" Batch size: ", task_batch_size) print(" Num steps: %d" % num_train_optimization_steps) startIterID = 0 # initialize the data iteration. task_iter_train = {name: None for name in task_ids} task_count = {name: 0 for name in task_ids} for epochId in tqdm(range(args.num_train_epochs), desc="Epoch"): model.train() for step in range(max_num_iter): iterId = startIterID + step + (epochId * max_num_iter) for task_id in task_ids: if iterId >= task_start_iter[task_id]: # if iterId % task_interval[task_id] == 0: loss, score = ForwardModelsTrain(args, task_cfg, device, task_id, task_count, task_iter_train, task_dataloader_train, model, task_losses, task_start_iter) loss = loss * loss_scale[task_id] if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps loss.backward() if (step + 1) % args.gradient_accumulation_steps == 0: optimizer.step() model.zero_grad() if default_gpu: tbLogger.step_train(epochId, iterId, float(loss), float(score), optimizer.show_lr(), task_id, 'train') if step % (20 * args.gradient_accumulation_steps ) == 0 and step != 0 and default_gpu: tbLogger.showLossTrain() model.eval() # when run evaluate, we run each task sequentially. for task_id in task_ids: for i, batch in enumerate(task_dataloader_val[task_id]): loss, score, batch_size = ForwardModelsVal( args, task_cfg, device, task_id, batch, model, task_losses) tbLogger.step_val(epochId, float(loss), float(score), task_id, batch_size, 'val') if default_gpu: sys.stdout.write('%d/%d\r' % (i, len(task_dataloader_val[task_id]))) sys.stdout.flush() ave_score = tbLogger.showLossVal() if args.lr_scheduler == 'automatic': lr_scheduler.step(ave_score) logger.info("best average score is %3f" % lr_scheduler.best) else: lr_scheduler.step() if default_gpu: # Save a trained model logger.info("** ** * Saving fine - tuned model on " + logPath + "** ** * ") model_to_save = ( model.module if hasattr(model, "module") else model ) # Only save the model it-self if not os.path.exists(savePath): os.makedirs(savePath) output_model_file = os.path.join( savePath, "pytorch_model_" + str(epochId) + ".bin") torch.save(model_to_save.state_dict(), output_model_file) tbLogger.txt_close()