def main(): f = viscid.load_file("~/dev/work/tmedium/*.3d.[-1].xdmf") grid = f.get_grid() gslc = "x=-26f:12.5f, y=-15f:15f, z=-15f:15f" # gslc = "x=-12.5f:26f, y=-15f:15f, z=-15f:15f" b_cc = f['b_cc'][gslc] b_cc.name = "b_cc" b_fc = f['b_fc'][gslc] b_fc.name = "b_fc" e_cc = f['e_cc'][gslc] e_cc.name = "e_cc" e_ec = f['e_ec'][gslc] e_ec.name = "e_ec" pp = f['pp'][gslc] pp.name = 'pp' pargs = dict(logscale=True, earth=True) # mpl.clf() # ax1 = mpl.subplot(211) # mpl.plot(f['pp']['y=0f'], **pargs) # # mpl.plot(viscid.magnitude(f['b_cc']['y=0f']), **pargs) # # mpl.show() # mpl.subplot(212, sharex=ax1, sharey=ax1) # mpl.plot(viscid.magnitude(viscid.fc2cc(f['b_fc'])['y=0f']), **pargs) # mpl.show() basename = './tmediumR.3d.{0:06d}'.format(int(grid.time)) viscid.save_fields(basename + '.h5', [b_cc, b_fc, e_cc, e_ec, pp]) f2 = viscid.load_file(basename + ".xdmf") pargs = dict(logscale=True, earth=True) mpl.clf() ax1 = mpl.subplot(211) mpl.plot(f2['pp']['y=0f'], style='contour', levels=5, colorbar=None, colors='k', **pargs) mpl.plot(viscid.magnitude(f2['b_cc']['y=0f']), **pargs) mpl.subplot(212, sharex=ax1, sharey=ax1) mpl.plot(viscid.magnitude(viscid.fc2cc(f2['b_fc'])['y=0f']), **pargs) mpl.show() os.remove(basename + '.h5') os.remove(basename + '.xdmf') return 0
def main(): f = viscid.load_file("~/dev/work/tmedium/*.3d.[-1].xdmf") grid = f.get_grid() gslc = "x=-26f:12.5f, y=-15f:15f, z=-15f:15f" # gslc = "x=-12.5f:26f, y=-15f:15f, z=-15f:15f" b_cc = f['b_cc'][gslc] b_cc.name = "b_cc" b_fc = f['b_fc'][gslc] b_fc.name = "b_fc" e_cc = f['e_cc'][gslc] e_cc.name = "e_cc" e_ec = f['e_ec'][gslc] e_ec.name = "e_ec" pp = f['pp'][gslc] pp.name = 'pp' pargs = dict(logscale=True, earth=True) # vlt.clf() # ax1 = vlt.subplot(211) # vlt.plot(f['pp']['y=0f'], **pargs) # # vlt.plot(viscid.magnitude(f['b_cc']['y=0f']), **pargs) # # vlt.show() # vlt.subplot(212, sharex=ax1, sharey=ax1) # vlt.plot(viscid.magnitude(viscid.fc2cc(f['b_fc'])['y=0f']), **pargs) # vlt.show() basename = './tmediumR.3d.{0:06d}'.format(int(grid.time)) viscid.save_fields(basename + '.h5', [b_cc, b_fc, e_cc, e_ec, pp]) f2 = viscid.load_file(basename + ".xdmf") pargs = dict(logscale=True, earth=True) vlt.clf() ax1 = vlt.subplot(211) vlt.plot(f2['pp']['y=0f'], style='contour', levels=5, colorbar=None, colors='k', **pargs) vlt.plot(viscid.magnitude(f2['b_cc']['y=0f']), **pargs) vlt.subplot(212, sharex=ax1, sharey=ax1) vlt.plot(viscid.magnitude(viscid.fc2cc(f2['b_fc'])['y=0f']), **pargs) vlt.show() os.remove(basename + '.h5') os.remove(basename + '.xdmf') return 0
def _main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("--show", "--plot", action="store_true") parser.add_argument("--keep", action="store_true") args = vutil.common_argparse(parser) # setup a simple force free field x = np.linspace(-2, 2, 20) y = np.linspace(-2.5, 2.5, 25) z = np.linspace(-3, 3, 30) psi = viscid.empty([x, y, z], name='psi', center='node') b = viscid.empty([x, y, z], nr_comps=3, name='b', center='cell', layout='interlaced') X, Y, Z = psi.get_crds_nc("xyz", shaped=True) Xcc, Ycc, Zcc = psi.get_crds_cc("xyz", shaped=True) psi[:, :, :] = 0.5 * (X**2 + Y**2 - Z**2) b['x'] = Xcc b['y'] = Ycc b['z'] = -Zcc # save an hdf5 file with companion xdmf file h5_fname = os.path.join(viscid.sample_dir, "test.h5") viscid.save_fields(h5_fname, [psi, b]) # load the companion xdmf file xdmf_fname = h5_fname[:-3] + ".xdmf" f = viscid.load_file(xdmf_fname) plt.subplot(131) vlt.plot(f['psi'], "y=0") plt.subplot(132) vlt.plot(f['b'].component_fields()[0], "y=0") plt.subplot(133) vlt.plot(f['b'].component_fields()[2], "y=0") plt.savefig(next_plot_fname(__file__)) if args.show: plt.show() if not args.keep: os.remove(h5_fname) os.remove(xdmf_fname) return 0
def _main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("--show", "--plot", action="store_true") parser.add_argument("--keep", action="store_true") args = vutil.common_argparse(parser) # setup a simple force free field x = np.linspace(-2, 2, 20) y = np.linspace(-2.5, 2.5, 25) z = np.linspace(-3, 3, 30) psi = viscid.empty([x, y, z], name='psi', center='node') b = viscid.empty([x, y, z], nr_comps=3, name='b', center='cell', layout='interlaced') X, Y, Z = psi.get_crds_nc("xyz", shaped=True) Xcc, Ycc, Zcc = psi.get_crds_cc("xyz", shaped=True) psi[:, :, :] = 0.5 * (X**2 + Y**2 - Z**2) b['x'] = Xcc b['y'] = Ycc b['z'] = -Zcc # save an hdf5 file with companion xdmf file h5_fname = os.path.join(".", "test.h5") viscid.save_fields(h5_fname, [psi, b]) # load the companion xdmf file xdmf_fname = h5_fname[:-3] + ".xdmf" f = viscid.load_file(xdmf_fname) plt.subplot(131) vlt.plot(f['psi'], "y=0") plt.subplot(132) vlt.plot(f['b'].component_fields()[0], "y=0") plt.subplot(133) vlt.plot(f['b'].component_fields()[2], "y=0") plt.savefig(next_plot_fname(__file__)) if args.show: plt.show() if not args.keep: os.remove(h5_fname) os.remove(xdmf_fname) return 0
def main(): parser = argparse.ArgumentParser(description="Test xdmf") parser.add_argument("--show", "--plot", action="store_true") parser.add_argument("--keep", action="store_true") args = vutil.common_argparse(parser) # setup a simple force free field x = np.linspace(-2, 2, 20) y = np.linspace(-2.5, 2.5, 25) z = np.linspace(-3, 3, 30) psi = viscid.empty([x, y, z], name="psi", center="node") b = viscid.empty([x, y, z], nr_comps=3, name="b", center="cell", layout="interlaced") X, Y, Z = psi.get_crds_nc("xyz", shaped=True) Xcc, Ycc, Zcc = psi.get_crds_cc("xyz", shaped=True) psi[:, :, :] = 0.5 * (X ** 2 + Y ** 2 - Z ** 2) b["x"] = Xcc b["y"] = Ycc b["z"] = -Zcc # save an hdf5 file with companion xdmf file h5_fname = sample_dir + "/test.h5" viscid.save_fields(h5_fname, [psi, b]) # load the companion xdmf file xdmf_fname = h5_fname[:-3] + ".xdmf" f = viscid.load_file(xdmf_fname) plt.subplot(131) mpl.plot(f["psi"], "y=0") plt.subplot(132) mpl.plot(f["b"].component_fields()[0], "y=0") plt.subplot(133) mpl.plot(f["b"].component_fields()[2], "y=0") mpl.plt.savefig(next_plot_fname(__file__)) if args.show: plt.show() if not args.keep: os.remove(h5_fname) os.remove(xdmf_fname)
def main(): parser = argparse.ArgumentParser(description="Test xdmf") parser.add_argument("--show", "--plot", action="store_true") parser.add_argument("--keep", action="store_true") args = vutil.common_argparse(parser) # setup a simple force free field x = np.linspace(-2, 2, 20) y = np.linspace(-2.5, 2.5, 25) z = np.linspace(-3, 3, 30) psi = viscid.empty([x, y, z], name='psi', center='node') b = viscid.empty([x, y, z], nr_comps=3, name='b', center='cell', layout='interlaced') X, Y, Z = psi.get_crds_nc("xyz", shaped=True) Xcc, Ycc, Zcc = psi.get_crds_cc("xyz", shaped=True) psi[:, :, :] = 0.5 * (X**2 + Y**2 - Z**2) b['x'] = Xcc b['y'] = Ycc b['z'] = -Zcc fname = sample_dir + '/test.npz' viscid.save_fields(fname, [psi, b]) f = viscid.load_file(fname) plt.subplot(131) mpl.plot(f['psi'], "y=0") plt.subplot(132) mpl.plot(f['b'].component_fields()[0], "y=0") plt.subplot(133) mpl.plot(f['b'].component_fields()[2], "y=0") mpl.plt.savefig(next_plot_fname(__file__)) if args.show: plt.show() if not args.keep: os.remove(fname)
def get_mp_info(pp, b, j, e, cache=True, cache_dir=None, slc="x=5.5j:11.0j, y=-4.0j:4.0j, z=-3.6j:3.6j", fit="mp_xloc", fit_p0=(9.0, 0.0, 0.0, 1.0, -1.0, -1.0)): """Get info about m-pause as flattened fields Notes: The first thing this function does is mask locations where the GSE-y current density < 1e-4. This masks out the bow shock and current free regions. This works for southward IMF, but it is not very general. Parameters: pp (ScalarcField): pressure b (VectorField): magnetic field j (VectorField): current density e (VectorField, None): electric field (same centering as b). If None, then the info that requires E will be filled with NaN cache (bool, str): Save to and load from cache, if "force", then don't load from cache if it exists, but do save a cache at the end cache_dir (str): Directory for cache, if None, same directory as that file to which the grid belongs slc (str): slice that gives a box that contains the m-pause fit (str): to which resulting field should the paraboloid be fit, defaults to mp_xloc, but pp_max_xloc might be useful in some circumstances fit_p0 (tuple): Initial guess vector for paraboloid fit Returns: dict: Unless otherwise noted, the entiries are 2D (y-z) fields - **mp_xloc** location of minimum abs(Bz), this works better than max of J^2 for FTEs - **mp_sheath_edge** location where Jy > 0.1 * Jy when coming in from the sheath side - **mp_sphere_edge** location where Jy > 0.1 * Jy when coming in from the sphere side - **mp_width** difference between m-sheath edge and msphere edge - **mp_shear** magnetic shear taken 6 grid points into the m-sheath / m-sphere - **pp_max** max pp - **pp_max_xloc** location of max pp - **epar_max** max e parallel - **epar_max_xloc** location of max e parallel - **paraboloid** numpy.recarray of paraboloid fit. The parameters are given in the 0th element, and the 1st element contains the 1-sigma values for the fit Raises: RuntimeError: if using MHD crds instead of GSE crds """ if not cache_dir: cache_dir = pp.find_info("_viscid_dirname", "./") run_name = pp.find_info("run", None) if cache and run_name: t = pp.time mp_fname = "{0}/{1}.mpause.{2:06.0f}".format(cache_dir, run_name, t) else: mp_fname = "" try: force = cache.strip().lower() == "force" except AttributeError: force = False try: if force or not mp_fname or not os.path.isfile(mp_fname + ".xdmf"): raise IOError() mp_info = {} with viscid.load_file(mp_fname + ".xdmf") as dat: fld_names = ["mp_xloc", "mp_sheath_edge", "mp_sphere_edge", "mp_width", "mp_shear", "pp_max", "pp_max_xloc", "epar_max", "epar_max_xloc"] for fld_name in fld_names: mp_info[fld_name] = dat[fld_name]["x=0"] except (IOError, KeyError): mp_info = {} crd_system = viscid.as_crd_system(b, None) if crd_system != 'gse': raise RuntimeError("get_mp_info can't work in MHD crds, " "switch to GSE please") if j.nr_patches == 1: pp_block = pp[slc] b_block = b[slc] j_block = j[slc] if e is None: e_block = np.nan * viscid.empty_like(j_block) else: e_block = e[slc] else: # interpolate an amr grid so we can proceed obnd = pp.get_slice_extent(slc) dx = np.min(pp.skeleton.L / pp.skeleton.n, axis=0) nx = np.ceil((obnd[1] - obnd[0]) / dx) vol = viscid.seed.Volume(obnd[0], obnd[1], nx, cache=True) pp_block = vol.wrap_field(viscid.interp_trilin(pp, vol), name="P").as_cell_centered() b_block = vol.wrap_field(viscid.interp_trilin(b, vol), name="B").as_cell_centered() j_block = vol.wrap_field(viscid.interp_trilin(j, vol), name="J").as_cell_centered() if e is None: e_block = np.nan * viscid.empty_like(j_block) else: e_block = vol.wrap_field(viscid.interp_trilin(e, vol), name="E").as_cell_centered() # jsq = viscid.dot(j_block, j_block) bsq = viscid.dot(b_block, b_block) # extract ndarrays and mask out bow shock / current free regions maskval = 1e-4 jy_mask = j_block['y'].data < maskval masked_bsq = 1.0 * bsq masked_bsq.data = np.ma.masked_where(jy_mask, bsq) xcc = j_block.get_crd_cc('x') nx = len(xcc) mp_xloc = np.argmin(masked_bsq, axis=0) # indices mp_xloc = mp_xloc.wrap(xcc[mp_xloc.data]) # location pp_max = np.max(pp_block, axis=0) pp_max_xloc = np.argmax(pp_block, axis=0) # indices pp_max_xloc = pp_max_xloc.wrap(xcc[pp_max_xloc.data]) # location epar = viscid.project(e_block, b_block) epar_max = np.max(epar, axis=0) epar_max_xloc = np.argmax(epar, axis=0) # indices epar_max_xloc = pp_max_xloc.wrap(xcc[epar_max_xloc.data]) # location _ret = find_mp_edges(j_block, 0.1, 0.1, maskval=maskval) sheath_edge, msphere_edge, mp_width, sheath_ind, sphere_ind = _ret # extract b and b**2 at sheath + 6 grid points and sphere - 6 grid pointns # clipping cases where things go outside the block. clipped ponints are # set to nan step = 6 # extract b if b_block.layout == "flat": comp_axis = 0 ic, _, iy, iz = np.ix_(*[np.arange(si) for si in b_block.shape]) ix = np.clip(sheath_ind + step, 0, nx - 1) b_sheath = b_block.data[ic, ix, iy, iz] ix = np.clip(sheath_ind - step, 0, nx - 1) b_sphere = b_block.data[ic, ix, iy, iz] elif b_block.layout == "interlaced": comp_axis = 3 _, iy, iz = np.ix_(*[np.arange(si) for si in b_block.shape[:-1]]) ix = np.clip(sheath_ind + step, 0, nx - 1) b_sheath = b_block.data[ix, iy, iz] ix = np.clip(sheath_ind - step, 0, nx - 1) b_sphere = b_block.data[ix, iy, iz] # extract b**2 bmag_sheath = np.sqrt(np.sum(b_sheath**2, axis=comp_axis)) bmag_sphere = np.sqrt(np.sum(b_sphere**2, axis=comp_axis)) costheta = (np.sum(b_sheath * b_sphere, axis=comp_axis) / (bmag_sphere * bmag_sheath)) costheta = np.where((sheath_ind + step < nx) & (sphere_ind - step >= 0), costheta, np.nan) mp_shear = mp_width.wrap((180.0 / np.pi) * np.arccos(costheta)) # don't bother with pretty name since it's not written to file # plane_crds = b_block.crds.slice_keep('x=0', cc=True) # fld_kwargs = dict(center="Cell", time=b.time) mp_width.name = "mp_width" mp_xloc.name = "mp_xloc" sheath_edge.name = "mp_sheath_edge" msphere_edge.name = "mp_sphere_edge" mp_shear.name = "mp_shear" pp_max.name = "pp_max" pp_max_xloc.name = "pp_max_xloc" epar_max.name = "epar_max" epar_max_xloc.name = "epar_max_xloc" mp_info = {} mp_info["mp_width"] = mp_width mp_info["mp_xloc"] = mp_xloc mp_info["mp_sheath_edge"] = sheath_edge mp_info["mp_sphere_edge"] = msphere_edge mp_info["mp_shear"] = mp_shear mp_info["pp_max"] = pp_max mp_info["pp_max_xloc"] = pp_max_xloc mp_info["epar_max"] = epar_max mp_info["epar_max_xloc"] = epar_max_xloc # cache new fields to disk if mp_fname: viscid.save_fields(mp_fname + ".h5", list(mp_info.values())) try: _paraboloid_params = fit_paraboloid(mp_info[fit], p0=fit_p0) mp_info["paraboloid"] = _paraboloid_params except ImportError as _exception: try: msg = _exception.message except AttributeError: msg = _exception.msg mp_info["paraboloid"] = viscid.DeferredImportError(msg) mp_info["mp_width"].pretty_name = "Magnetopause Width" mp_info["mp_xloc"].pretty_name = "Magnetopause $X_{gse}$ Location" mp_info["mp_sheath_edge"].pretty_name = "Magnetosheath Edge" mp_info["mp_sphere_edge"].pretty_name = "Magnetosphere Edge" mp_info["mp_shear"].pretty_name = "Magnetic Shear" mp_info["pp_max"].pretty_name = "Max Pressure" mp_info["pp_max_xloc"].pretty_name = "Max Pressure Location" mp_info["epar_max"].pretty_name = "Max E Parallel" mp_info["epar_max_xloc"].pretty_name = "Max E Parallel Location" return mp_info
def get_mp_info(pp, b, j, e, cache=True, cache_dir=None, slc="x=5.5f:11.0f, y=-4.0f:4.0f, z=-3.6f:3.6f", fit="mp_xloc", fit_p0=(9.0, 0.0, 0.0, 1.0, -1.0, -1.0)): """Get info about m-pause as flattened fields Notes: The first thing this function does is mask locations where the GSE-y current density < 1e-4. This masks out the bow shock and current free regions. This works for southward IMF, but it is not very general. Parameters: pp (ScalarcField): pressure b (VectorField): magnetic field j (VectorField): current density e (VectorField, None): electric field (same centering as b). If None, then the info that requires E will be filled with NaN cache (bool, str): Save to and load from cache, if "force", then don't load from cache if it exists, but do save a cache at the end cache_dir (str): Directory for cache, if None, same directory as that file to which the grid belongs slc (str): slice that gives a box that contains the m-pause fit (str): to which resulting field should the paraboloid be fit, defaults to mp_xloc, but pp_max_xloc might be useful in some circumstances fit_p0 (tuple): Initial guess vector for paraboloid fit Returns: dict: Unless otherwise noted, the entiries are 2D (y-z) fields - **mp_xloc** location of minimum abs(Bz), this works better than max of J^2 for FTEs - **mp_sheath_edge** location where Jy > 0.1 * Jy when coming in from the sheath side - **mp_sphere_edge** location where Jy > 0.1 * Jy when coming in from the sphere side - **mp_width** difference between m-sheath edge and msphere edge - **mp_shear** magnetic shear taken 6 grid points into the m-sheath / m-sphere - **pp_max** max pp - **pp_max_xloc** location of max pp - **epar_max** max e parallel - **epar_max_xloc** location of max e parallel - **paraboloid** numpy.recarray of paraboloid fit. The parameters are given in the 0th element, and the 1st element contains the 1-sigma values for the fit Raises: RuntimeError: if using MHD crds instead of GSE crds """ if not cache_dir: cache_dir = pp.find_info("_viscid_dirname", "./") run_name = pp.find_info("run", None) if cache and run_name: t = pp.time mp_fname = "{0}/{1}.mpause.{2:06.0f}".format(cache_dir, run_name, t) else: mp_fname = "" try: force = cache.strip().lower() == "force" except AttributeError: force = False try: if force or not mp_fname or not os.path.isfile(mp_fname + ".xdmf"): raise IOError() mp_info = {} with viscid.load_file(mp_fname + ".xdmf") as dat: fld_names = [ "mp_xloc", "mp_sheath_edge", "mp_sphere_edge", "mp_width", "mp_shear", "pp_max", "pp_max_xloc", "epar_max", "epar_max_xloc" ] for fld_name in fld_names: mp_info[fld_name] = dat[fld_name]["x=0"] except (IOError, KeyError): mp_info = {} crd_system = viscid.as_crd_system(b, None) if crd_system != 'gse': raise RuntimeError("get_mp_info can't work in MHD crds, " "switch to GSE please") if j.nr_patches == 1: pp_block = pp[slc] b_block = b[slc] j_block = j[slc] if e is None: e_block = np.nan * viscid.empty_like(j_block) else: e_block = e[slc] else: # interpolate an amr grid so we can proceed obnd = pp.get_slice_extent(slc) dx = np.min(pp.skeleton.L / pp.skeleton.n, axis=0) nx = np.ceil((obnd[1] - obnd[0]) / dx) vol = viscid.seed.Volume(obnd[0], obnd[1], nx, cache=True) pp_block = vol.wrap_field(viscid.interp_trilin(pp, vol), name="P").as_cell_centered() b_block = vol.wrap_field(viscid.interp_trilin(b, vol), name="B").as_cell_centered() j_block = vol.wrap_field(viscid.interp_trilin(j, vol), name="J").as_cell_centered() if e is None: e_block = np.nan * viscid.empty_like(j_block) else: e_block = vol.wrap_field(viscid.interp_trilin(e, vol), name="E").as_cell_centered() # jsq = viscid.dot(j_block, j_block) bsq = viscid.dot(b_block, b_block) # extract ndarrays and mask out bow shock / current free regions maskval = 1e-4 jy_mask = j_block['y'].data < maskval masked_bsq = 1.0 * bsq masked_bsq.data = np.ma.masked_where(jy_mask, bsq) xcc = j_block.get_crd_cc('x') nx = len(xcc) mp_xloc = np.argmin(masked_bsq, axis=0) # indices mp_xloc = mp_xloc.wrap(xcc[mp_xloc.data]) # location pp_max = np.max(pp_block, axis=0) pp_max_xloc = np.argmax(pp_block, axis=0) # indices pp_max_xloc = pp_max_xloc.wrap(xcc[pp_max_xloc.data]) # location epar = viscid.project(e_block, b_block) epar_max = np.max(epar, axis=0) epar_max_xloc = np.argmax(epar, axis=0) # indices epar_max_xloc = pp_max_xloc.wrap(xcc[epar_max_xloc.data]) # location _ret = find_mp_edges(j_block, 0.1, 0.1, maskval=maskval) sheath_edge, msphere_edge, mp_width, sheath_ind, sphere_ind = _ret # extract b and b**2 at sheath + 6 grid points and sphere - 6 grid pointns # clipping cases where things go outside the block. clipped ponints are # set to nan step = 6 # extract b if b_block.layout == "flat": comp_axis = 0 ic, _, iy, iz = np.ix_(*[np.arange(si) for si in b_block.shape]) ix = np.clip(sheath_ind + step, 0, nx - 1) b_sheath = b_block.data[ic, ix, iy, iz] ix = np.clip(sheath_ind - step, 0, nx - 1) b_sphere = b_block.data[ic, ix, iy, iz] elif b_block.layout == "interlaced": comp_axis = 3 _, iy, iz = np.ix_(*[np.arange(si) for si in b_block.shape[:-1]]) ix = np.clip(sheath_ind + step, 0, nx - 1) b_sheath = b_block.data[ix, iy, iz] ix = np.clip(sheath_ind - step, 0, nx - 1) b_sphere = b_block.data[ix, iy, iz] # extract b**2 bmag_sheath = np.sqrt(np.sum(b_sheath**2, axis=comp_axis)) bmag_sphere = np.sqrt(np.sum(b_sphere**2, axis=comp_axis)) costheta = (np.sum(b_sheath * b_sphere, axis=comp_axis) / (bmag_sphere * bmag_sheath)) costheta = np.where( (sheath_ind + step < nx) & (sphere_ind - step >= 0), costheta, np.nan) mp_shear = mp_width.wrap((180.0 / np.pi) * np.arccos(costheta)) # don't bother with pretty name since it's not written to file # plane_crds = b_block.crds.slice_keep('x=0', cc=True) # fld_kwargs = dict(center="Cell", time=b.time) mp_width.name = "mp_width" mp_xloc.name = "mp_xloc" sheath_edge.name = "mp_sheath_edge" msphere_edge.name = "mp_sphere_edge" mp_shear.name = "mp_shear" pp_max.name = "pp_max" pp_max_xloc.name = "pp_max_xloc" epar_max.name = "epar_max" epar_max_xloc.name = "epar_max_xloc" mp_info = {} mp_info["mp_width"] = mp_width mp_info["mp_xloc"] = mp_xloc mp_info["mp_sheath_edge"] = sheath_edge mp_info["mp_sphere_edge"] = msphere_edge mp_info["mp_shear"] = mp_shear mp_info["pp_max"] = pp_max mp_info["pp_max_xloc"] = pp_max_xloc mp_info["epar_max"] = epar_max mp_info["epar_max_xloc"] = epar_max_xloc # cache new fields to disk if mp_fname: viscid.save_fields(mp_fname + ".h5", mp_info.values()) try: _paraboloid_params = fit_paraboloid(mp_info[fit], p0=fit_p0) mp_info["paraboloid"] = _paraboloid_params except ImportError as _exception: try: msg = _exception.message except AttributeError: msg = _exception.msg mp_info["paraboloid"] = viscid.DeferredImportError(msg) mp_info["mp_width"].pretty_name = "Magnetopause Width" mp_info["mp_xloc"].pretty_name = "Magnetopause $X_{gse}$ Location" mp_info["mp_sheath_edge"].pretty_name = "Magnetosheath Edge" mp_info["mp_sphere_edge"].pretty_name = "Magnetosphere Edge" mp_info["mp_shear"].pretty_name = "Magnetic Shear" mp_info["pp_max"].pretty_name = "Max Pressure" mp_info["pp_max_xloc"].pretty_name = "Max Pressure Location" mp_info["epar_max"].pretty_name = "Max E Parallel" mp_info["epar_max_xloc"].pretty_name = "Max E Parallel Location" return mp_info