def pytest_generate_tests(metafunc): _test_suite = get_series() _test_suite.update(get_geometry_series()) if metafunc.function.__name__ in ["test_consistency", "test_traversal_mutex"]: argsvalues = [] for name, series in _test_suite.items(): args = {"id": name} argsvalues.append(pytest.param(name, series, **args)) metafunc.parametrize(argnames=["name", "series"], argvalues=argsvalues)
get_convert_cases, get_inference_cases, infers, ) from pandas_profiling.config import config from pandas_profiling.model.typeset import ( Boolean, Categorical, DateTime, Numeric, ProfilingTypeSet, Unsupported, ) series = get_series() typeset = ProfilingTypeSet() contains_map = { Numeric: { "int_series", "Int64_int_series", "int_range", "Int64_int_nan_series", "int_series_boolean", "np_uint32", "pd_uint32", "float_series", "float_series2", "float_series3",
DateTime, Float, Generic, Integer, Object, String, TimeDelta, ) from visions.typesets.standard_set import StandardSet def reload_series_to_numpy(s): return np.array(s.tolist()) array = get_series() array.update(get_geometry_series()) array = {k: v.to_numpy() for k, v in array.items()} # Pandas doesn't correctly handle complex categoricals pending # https://github.com/pandas-dev/pandas/pull/36482/ array.pop("categorical_complex_series") # Some sequences don't round trip correctly from pandas (i.e. Series.to_numpy() # is not equivalent to np.array(Series.tolist()) array["Int64_int_series"] = reload_series_to_numpy(array["Int64_int_series"]) array["pd_uint32"] = reload_series_to_numpy(array["pd_uint32"]) typeset = StandardSet() - Categorical contains_map = {