for x in img_audio: try: # one group for each image file which will contain its vgg16 features and audio captions output_file.create_group("/", append_name + x.split('.')[0]) except: continue # else load an existing file to append new features to else: output_file = tables.open_file(data_loc, mode='a') #list all the nodes node_list = output_file.root._f_list_nodes() # create the visual features for all images for x in vis: vis_feats(img_path, output_file, append_name, img_audio, node_list, x) ######### parameter settings for the audio preprocessing ############### # option for which audio feature to create (options are mfcc, fbanks, freq_spectrum and raw) feat = '' params = [] # set alpha for the preemphasis alpha = 0.97 # set the number of desired filterbanks nfilters = 40 # windowsize and shift in seconds t_window = .025 t_shift = .010 # option to include delta and double delta features use_deltas = True # option to include frame energy
subgroups.append(node) for x in batch: output_file.create_group(node, append_name + x.split('.')[0]) count +=1 # list all the nodes containing training instances train_node_list = [] for subgroup in subgroups: train_node_list = train_node_list + subgroup._f_list_nodes() subgroups = [] for batch in batcher(10000, val_img): node = output_file.create_group('/', 'subgroup_' + str(count)) subgroups.append(node) for x in batch: output_file.create_group(node, append_name + x.split('.')[0]) count +=1 # list all the nodes containing validation instances val_node_list = [] for subgroup in subgroups: val_node_list = val_node_list + subgroup._f_list_nodes() # create the visual features for all images vis_feats(val_img_path, output_file, append_name, val_img, val_node_list, 'resnet') vis_feats(train_img_path, output_file, append_name, train_img, train_node_list, 'resnet') # add text features for all captions text_features_coco(train_dict, output_file, append_name, train_node_list) text_features_coco(val_dict, output_file, append_name, val_node_list) # close the output files output_file.close()