示例#1
0
 def _plot_grasp(self, datapoint, image_field_name, pose_field_name, gripper_mode, angular_preds=None):
     """ Plots a single grasp represented as a datapoint. """
     image = DepthImage(datapoint[image_field_name][:,:,0])
     depth = datapoint[pose_field_name][2]
     width = 0
     grasps = []
     if gripper_mode == GripperMode.PARALLEL_JAW or \
        gripper_mode == GripperMode.LEGACY_PARALLEL_JAW:
         if angular_preds is not None:
             num_bins = angular_preds.shape[0] / 2
             bin_width = GeneralConstants.PI / num_bins
             for i in range(num_bins):
                 bin_cent_ang = i * bin_width + bin_width / 2
                 grasps.append(Grasp2D(center=image.center, angle=GeneralConstants.PI / 2 - bin_cent_ang, depth=depth, width=0.0))
             grasps.append(Grasp2D(center=image.center, angle=datapoint[pose_field_name][3], depth=depth, width=0.0))
         else:
             grasps.append(Grasp2D(center=image.center,
                         angle=0,
                         depth=depth,
                         width=0.0))
         width = datapoint[pose_field_name][-1]
     else:
         grasps.append(SuctionPoint2D(center=image.center,
                                axis=[1,0,0],
                                depth=depth))                
     vis2d.imshow(image)
     for i, grasp in enumerate(grasps[:-1]):
         vis2d.grasp(grasp, width=width, color=plt.cm.RdYlGn(angular_preds[i * 2 + 1]))
     vis2d.grasp(grasps[-1], width=width, color='b')
 def visualization(self, action, rgbd_im, offset, scale):
     # Vis final grasp.
     if self.policy_config["vis"]["final_grasp"]:
         vis.figure(size=(10, 10))
         vis.imshow(rgbd_im.depth,
                    vmin=self.policy_config["vis"]["vmin"],
                    vmax=self.policy_config["vis"]["vmax"])
         vis.grasp(action.grasp,
                   scale=2.5,
                   show_center=True,
                   show_axis=True)
         vis.title("Planned grasp at depth {0:.3f}m with Q={1:.3f}".format(
             action.grasp.depth * scale + offset, action.q_value))
         vis.savefig('test_dataset/grasp.png')
示例#3
0
 def _plot_grasp(self, datapoint, image_field_name, pose_field_name,
                 gripper_mode):
     """ Plots a single grasp represented as a datapoint. """
     image = DepthImage(datapoint[image_field_name][:, :, 0])
     depth = datapoint[pose_field_name][2]
     width = 0
     if gripper_mode == GripperMode.PARALLEL_JAW or \
        gripper_mode == GripperMode.LEGACY_PARALLEL_JAW:
         grasp = Grasp2D(center=image.center,
                         angle=0,
                         depth=depth,
                         width=0.0)
         width = datapoint[pose_field_name][-1]
     else:
         grasp = SuctionPoint2D(center=image.center,
                                axis=[1, 0, 0],
                                depth=depth)
     vis2d.imshow(image)
     vis2d.grasp(grasp, width=width)
示例#4
0
    def visualize(self):

        vis.clf()

        # Visualize.
        if self.cfg["vis"]["color_image"]:
            vis.imshow(self._camera_data.rgb_img)
            vis.show()
        if self.cfg["vis"]["depth_image"]:
            vis.imshow(self._camera_data.depth_img)
            vis.show()

        if self.cfg["vis"]["segmask"]:
            vis.imshow(self._camera_data.seg_img)
            vis.show()

        if self.cfg["vis"]["best_grasp"]:
            vis.imshow(self._camera_data.rgb_img)
            vis.grasp(self._dexnet_gp[0][0], scale=2.5, show_center=True, show_axis=True)
            vis.show()
示例#5
0
    def _visualize_2d(self,
                      actions,
                      preds,
                      wrapped_depth_im,
                      num_actions,
                      scale,
                      show_axis,
                      output_dir=None):
        """Visualize the actions in 2D."""
        self._logger.info("Visualizing actions in 2d...")

        # Plot actions in 2D.
        vis.figure()
        vis.imshow(wrapped_depth_im)
        for i in range(num_actions):
            vis.grasp(actions[i].grasp,
                      scale=scale,
                      show_axis=show_axis,
                      color=plt.cm.RdYlGn(actions[i].q_value))
        vis.title("Top {} Grasps".format(num_actions))
        if output_dir is not None:
            vis.savefig(os.path.join(output_dir, "top_grasps.png"))
        else:
            vis.show()
示例#6
0
    # query policy
    policy_start = time.time()
    action = policy(state)
    logger.info('Planning took %.3f sec' % (time.time() - policy_start))

    # vis final grasp
    if policy_config['vis']['final_grasp']:
        vis2d.figure(size=(10, 10))
        vis2d.subplot(1, 2, 1)
        vis2d.imshow(state.rgbd_im.depth,
                     vmin=policy_config['vis']['vmin'],
                     vmax=policy_config['vis']['vmax'])
        vis2d.grasp(original_action.grasp,
                    scale=policy_config['vis']['grasp_scale'],
                    show_center=False,
                    show_axis=True,
                    color='r')
        vis2d.title('Original (Q=%.3f) (Z=%.3f)' %
                    (original_action.q_value, original_action.grasp.depth))
        vis2d.subplot(1, 2, 2)
        vis2d.imshow(state.rgbd_im.depth,
                     vmin=policy_config['vis']['vmin'],
                     vmax=policy_config['vis']['vmax'])
        vis2d.grasp(action.grasp,
                    scale=policy_config['vis']['grasp_scale'],
                    show_center=False,
                    show_axis=True,
                    color='r')
        vis2d.title('New (Q=%.3f) (Z=%.3f)' %
                    (action.q_value, action.grasp.depth))
示例#7
0
rgbd_state = RgbdImageState(rgbd_im, camera_int)
#%%
grasp = grasp_policy(rgbd_state)
#%%
img2 = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img2 = cv2.circle(img2,(int(grasp.grasp.center.x),int(grasp.grasp.center.y)),2,(255,0,0),3)
plt.imshow(img2)

#%%
img3 = cv2.cvtColor(d, cv2.COLOR_BGR2RGB)
img3 = cv2.circle(img3,(int(grasp.grasp.center.x),int(grasp.grasp.center.y)),2,(255,0,0),3)
plt.imshow(img3)
#%%
vis.figure(size=(16,16))
vis.imshow(rgbd_im.color, vmin=0.5, vmax=2.5)
vis.grasp(grasp.grasp, scale=2.0,jaw_width=2.0, show_center=True, show_axis=True, color=plt.cm.RdYlBu(.1))
vis.title('Elite grasp with score: ' + str(grasp.q_value))
vis.show()
#%%
vis.figure(size=(16,16))
vis.imshow(rgbd_im.depth, vmin=0.5, vmax=2.5)
vis.grasp(grasp.grasp, scale=2.0,jaw_width=2.0, show_center=True, show_axis=True, color=plt.cm.RdYlBu(.1))
vis.title('Elite grasp with score: ' + str(grasp.q_value))
vis.show()
#%%
print(grasp.grasp.angle)
print(grasp.grasp.depth)
print(grasp.grasp.width)
print(grasp.grasp.axis)
#%%
grasp.grasp.approach_angle
示例#8
0
    # Query policy.
    policy_start = time.time()
    action = policy(state)
    logger.info("Planning took %.3f sec" % (time.time() - policy_start))

    # Vis final grasp.
    if policy_config["vis"]["final_grasp"]:
        vis2d.figure(size=(10, 10))
        vis2d.subplot(1, 2, 1)
        vis2d.imshow(state.rgbd_im.depth,
                     vmin=policy_config["vis"]["vmin"],
                     vmax=policy_config["vis"]["vmax"])
        vis2d.grasp(original_action.grasp,
                    scale=policy_config["vis"]["grasp_scale"],
                    show_center=False,
                    show_axis=True,
                    color="r")
        vis2d.title("Original (Q=%.3f) (Z=%.3f)" %
                    (original_action.q_value, original_action.grasp.depth))
        vis2d.subplot(1, 2, 2)
        vis2d.imshow(state.rgbd_im.depth,
                     vmin=policy_config["vis"]["vmin"],
                     vmax=policy_config["vis"]["vmax"])
        vis2d.grasp(action.grasp,
                    scale=policy_config["vis"]["grasp_scale"],
                    show_center=False,
                    show_axis=True,
                    color="r")
        vis2d.title("New (Q=%.3f) (Z=%.3f)" %
                    (action.q_value, action.grasp.depth))
示例#9
0
        else:
            raise ValueError(
                "Invalid fully-convolutional policy type: {}".format(
                    policy_config["type"]))
    else:
        policy_type = "cem"
        if "type" in policy_config:
            policy_type = policy_config["type"]
        if policy_type == "ranking":
            policy = RobustGraspingPolicy(policy_config)
        elif policy_type == "cem":
            policy = CrossEntropyRobustGraspingPolicy(policy_config)
        else:
            raise ValueError("Invalid policy type: {}".format(policy_type))

    # Query policy.
    policy_start = time.time()
    action = policy(state)
    logger.info("Planning took %.3f sec" % (time.time() - policy_start))

    # Vis final grasp.
    if policy_config["vis"]["final_grasp"]:
        vis.figure(size=(10, 10))
        vis.imshow(rgbd_im.depth,
                   vmin=policy_config["vis"]["vmin"],
                   vmax=policy_config["vis"]["vmax"])
        vis.grasp(action.grasp, scale=2.5, show_center=False, show_axis=True)
        vis.title("Planned grasp at depth {0:.3f}m with Q={1:.3f}".format(
            action.grasp.depth, action.q_value))
        vis.show()
示例#10
0
    def _action(self, state):
        """ Plans the grasp with the highest probability of success on
        the given RGB-D image.

        Attributes
        ----------
        state : :obj:`RgbdImageState`
            image to plan grasps on

        Returns
        -------
        :obj:`GraspAction`
            grasp to execute
        """
        # check valid input
        if not isinstance(state, RgbdImageState):
            raise ValueError('Must provide an RGB-D image state.')

        # parse state
        rgbd_im = state.rgbd_im
        camera_intr = state.camera_intr
        segmask = state.segmask

        # sample grasps
        grasps = self._grasp_sampler.sample(
            rgbd_im,
            camera_intr,
            self._num_grasp_samples,
            segmask=segmask,
            visualize=self.config['vis']['grasp_sampling'],
            seed=None)
        num_grasps = len(grasps)
        if num_grasps == 0:
            logging.warning('No valid grasps could be found')
            raise NoValidGraspsException()

        # compute grasp quality
        compute_start = time()
        q_values = self._grasp_quality_fn(state, grasps, params=self._config)
        logging.debug('Grasp evaluation took %.3f sec' %
                      (time() - compute_start))

        if self.config['vis']['grasp_candidates']:
            # display each grasp on the original image, colored by predicted success
            norm_q_values = (q_values - np.min(q_values)) / (np.max(q_values) -
                                                             np.min(q_values))
            vis.figure(size=(FIGSIZE, FIGSIZE))
            vis.imshow(rgbd_im.depth,
                       vmin=self.config['vis']['vmin'],
                       vmax=self.config['vis']['vmax'])
            for grasp, q in zip(grasps, norm_q_values):
                vis.grasp(grasp,
                          scale=1.0,
                          grasp_center_size=10,
                          grasp_center_thickness=2.5,
                          jaw_width=2.5,
                          show_center=False,
                          show_axis=True,
                          color=plt.cm.RdYlGn(q))
            vis.title('Sampled grasps')
            self.show('grasp_candidates.png')

        # select grasp
        index = self.select(grasps, q_values)
        grasp = grasps[index]
        q_value = q_values[index]
        if self.config['vis']['grasp_plan']:
            vis.figure()
            vis.imshow(rgbd_im.depth,
                       vmin=self.config['vis']['vmin'],
                       vmax=self.config['vis']['vmax'])
            vis.grasp(grasp, scale=2.0, show_axis=True)
            vis.title('Best Grasp: d=%.3f, q=%.3f' % (grasp.depth, q_value))
            vis.show()

        return GraspAction(grasp, q_value, state.rgbd_im.depth)
        os.path.join(config["calib_dir"], sensor_frame, tf_filename))

    # Setup sensor.
    sensor = RgbdSensorFactory.sensor(sensor_type, config["sensor"])
    sensor.start()
    camera_intr = sensor.ir_intrinsics

    # Read images.
    color_im, depth_im, _ = sensor.frames()
    color_im = color_im.inpaint(rescale_factor=inpaint_rescale_factor)
    depth_im = depth_im.inpaint(rescale_factor=inpaint_rescale_factor)
    rgbd_im = RgbdImage.from_color_and_depth(color_im, depth_im)

    # Sample grasps.
    grasp_sampler = AntipodalDepthImageGraspSampler(sample_config,
                                                    gripper_width)
    grasps = grasp_sampler.sample(rgbd_im,
                                  camera_intr,
                                  num_grasp_samples,
                                  segmask=None,
                                  seed=100,
                                  visualize=visualize_sampling)

    # Visualize.
    vis.figure()
    vis.imshow(depth_im)
    for grasp in grasps:
        vis.grasp(grasp, scale=1.5, show_center=False, show_axis=True)
    vis.title("Sampled grasps")
    vis.show()
示例#12
0
    def execute_policy(self, rgbd_image_state, resetting=False):
        """
        Executes a grasping policy on an `RgbdImageState`.
        Parameters
        ----------
        rgbd_image_state: type `gqcnn.RgbdImageState`
            The :py:class:`gqcnn.RgbdImageState` that encapsulates the
            depth and color image along with camera intrinsics.
        """
        policy_start = time.time()
        if not self.grasping_policy:
            self._get_grasp_policy()
        try:
            grasping_action = self.grasping_policy(rgbd_image_state)
        except:
            vis.figure(size=(10, 10))
            vis.imshow(self.rgbd_im.color, vmin=0, vmax=255)
            vis.title("No Valid Grasp, Task Finished")
            vis.show()

        self.logger.info("Planning took %.3f sec" %
                         (time.time() - policy_start))

        # Angle of grasping point w.r.t the x-axis of camera frame
        angle_wrt_x = grasping_action.grasp.angle
        angle_degree = angle_wrt_x * 180 / np.pi
        if angle_degree <= -270:
            angle_degree += 360
        elif (angle_degree > -270
              and angle_degree <= -180) or (angle_degree > -180
                                            and angle_degree <= -90):
            angle_degree += 180
        elif (angle_degree > 90
              and angle_degree <= 180) or (angle_degree > 180
                                           and angle_degree <= 270):
            angle_degree -= 180
        elif (angle_degree > 270 and angle_degree <= 360):
            angle_degree -= 360
        angle_wrt_x = angle_degree * np.pi / 180

        if resetting:
            angle_wrt_x += np.pi / 2
            # Translation of grasping point w.r.t the camera frame
            grasping_translation = np.array([
                grasping_action.grasp.pose().translation[0] * -1,
                grasping_action.grasp.pose().translation[1],
                grasping_action.grasp.pose().translation[2] * -1
            ])
            # Rotation matrix from world frame to camera frame
            world_to_cam_rotation = np.dot(
                np.array([[1, 0, 0], [0, np.cos(np.pi), -np.sin(np.pi)],
                          [0, np.sin(np.pi), np.cos(np.pi)]]),
                np.array([[np.cos(np.pi), -np.sin(np.pi), 0],
                          [np.sin(np.pi), np.cos(np.pi), 0], [0, 0, 1]]))
            # Rotation matrix from camera frame to gripper frame
            cam_to_gripper_rotation = np.array(
                [[np.cos(angle_wrt_x), -np.sin(angle_wrt_x), 0],
                 [np.sin(angle_wrt_x),
                  np.cos(angle_wrt_x), 0], [0, 0, 1]])
        else:
            # Translation of grasping point w.r.t the camera frame
            grasping_translation = np.array([
                grasping_action.grasp.pose().translation[1],
                grasping_action.grasp.pose().translation[0],
                grasping_action.grasp.pose().translation[2]
            ]) * -1

            # Rotation matrix from world frame to camera frame
            world_to_cam_rotation = np.dot(
                np.array([[1, 0, 0], [0, np.cos(np.pi), -np.sin(np.pi)],
                          [0, np.sin(np.pi), np.cos(np.pi)]]),
                np.array([[np.cos(np.pi / 2), -np.sin(np.pi / 2), 0],
                          [np.sin(np.pi / 2),
                           np.cos(np.pi / 2), 0], [0, 0, 1]]))
            # Rotation matrix from camera frame to gripper frame
            cam_to_gripper_rotation = np.dot(
                np.array([[np.cos(angle_wrt_x), -np.sin(angle_wrt_x), 0],
                          [np.sin(angle_wrt_x),
                           np.cos(angle_wrt_x), 0], [0, 0, 1]]),
                np.array([[np.cos(np.pi / 2), -np.sin(np.pi / 2), 0],
                          [np.sin(np.pi / 2),
                           np.cos(np.pi / 2), 0], [0, 0, 1]]))

        world_to_gripper_rotation = np.dot(world_to_cam_rotation,
                                           cam_to_gripper_rotation)
        quat_wxyz = from_rotation_matrix(world_to_gripper_rotation)
        grasping_quaternion = np.array(
            [quat_wxyz.x, quat_wxyz.y, quat_wxyz.z, quat_wxyz.w])

        grasping_pose = np.hstack((grasping_translation, grasping_quaternion))

        vis.figure(size=(10, 10))
        vis.imshow(self.rgbd_im.color, vmin=0, vmax=255)
        vis.grasp(grasping_action.grasp,
                  scale=2.5,
                  show_center=False,
                  show_axis=True)
        vis.title("Planned grasp at depth {0:.3f}m \n".format(
            grasping_action.grasp.depth) +
                  'grasping pose {}'.format(grasping_pose))
        vis.show()
        return grasping_pose
            raise ValueError(
                "Invalid fully-convolutional policy type: {}".format(
                    policy_config["type"]))
    else:
        policy_type = "cem"
        if "type" in policy_config:
            policy_type = policy_config["type"]
        if policy_type == "ranking":
            policy = RobustGraspingPolicy(policy_config)
        elif policy_type == "cem":
            policy = CrossEntropyRobustGraspingPolicy(policy_config)
        else:
            raise ValueError("Invalid policy type: {}".format(policy_type))

    # Query policy.
    policy_start = time.time()
    action = policy(state)
    print(action.grasp.pose())
    logger.info("Planning took %.3f sec" % (time.time() - policy_start))

    # Vis final grasp.
    if policy_config["vis"]["final_grasp"]:
        vis.figure(size=(10, 10))
        vis.imshow(rgbd_im.depth,
                   vmin=policy_config["vis"]["vmin"],
                   vmax=policy_config["vis"]["vmax"])
        vis.grasp(action.grasp, scale=1, show_center=True, show_axis=True)
        vis.title("Planned grasp at depth {0:.3f}m with Q={1:.3f}".format(
            action.grasp.depth, action.q_value))
        vis.show()
def generate_gqcnn_dataset(dataset_path, database, target_object_keys,
                           env_rv_params, gripper_name, config):
    """
    Generates a GQ-CNN TensorDataset for training models with new grippers, quality metrics, objects, and cameras.

    Parameters
    ----------
    dataset_path : str
        path to save the dataset to
    database : :obj:`Hdf5Database`
        Dex-Net database containing the 3D meshes, grasps, and grasp metrics
    target_object_keys : :obj:`OrderedDict`
        dictionary mapping dataset names to target objects (either 'all' or a list of specific object keys)
    env_rv_params : :obj:`OrderedDict`
        parameters of the camera and object random variables used in sampling (see meshpy.UniformPlanarWorksurfaceImageRandomVariable for more info)
    gripper_name : str
        name of the gripper to use
    config : :obj:`autolab_core.YamlConfig`
        other parameters for dataset generation

    Notes
    -----
    Required parameters of config are specified in Other Parameters

    Other Parameters
    ----------------    
    images_per_stable_pose : int
        number of object and camera poses to sample for each stable pose
    stable_pose_min_p : float
        minimum probability of occurrence for a stable pose to be used in data generation (used to prune bad stable poses
    
    gqcnn/crop_width : int
        width, in pixels, of crop region around each grasp center, before resize (changes the size of the region seen by the GQ-CNN)
    gqcnn/crop_height : int
        height, in pixels,  of crop region around each grasp center, before resize (changes the size of the region seen by the GQ-CNN)
    gqcnn/final_width : int
        width, in pixels,  of final transformed grasp image for input to the GQ-CNN (defaults to 32)
    gqcnn/final_height : int
        height, in pixels,  of final transformed grasp image for input to the GQ-CNN (defaults to 32)

    table_alignment/max_approach_table_angle : float
        max angle between the grasp axis and the table normal when the grasp approach is maximally aligned with the table normal
    table_alignment/max_approach_offset : float
        max deviation from perpendicular approach direction to use in grasp collision checking
    table_alignment/num_approach_offset_samples : int
        number of approach samples to use in collision checking

    collision_checking/table_offset : float
        max allowable interpenetration between the gripper and table to be considered collision free
    collision_checking/table_mesh_filename : str
        path to a table mesh for collision checking (default data/meshes/table.obj)
    collision_checking/approach_dist : float
        distance, in meters, between the approach pose and final grasp pose along the grasp axis
    collision_checking/delta_approach : float
        amount, in meters, to discretize the straight-line path from the gripper approach pose to the final grasp pose

    tensors/datapoints_per_file : int
        number of datapoints to store in each unique tensor file on disk
    tensors/fields : :obj:`dict`
        dictionary mapping field names to dictionaries specifying the data type, height, width, and number of channels for each tensor

    debug : bool
        True (or 1) if the random seed should be set to enforce deterministic behavior, False (0) otherwise
    vis/candidate_grasps : bool
        True (or 1) if the collision free candidate grasps should be displayed in 3D (for debugging)
    vis/rendered_images : bool
        True (or 1) if the rendered images for each stable pose should be displayed (for debugging)
    vis/grasp_images : bool
        True (or 1) if the transformed grasp images should be displayed (for debugging)
    """
    # read data gen params
    output_dir = dataset_path
    gripper = RobotGripper.load(gripper_name)
    image_samples_per_stable_pose = config['images_per_stable_pose']
    stable_pose_min_p = config['stable_pose_min_p']

    # read gqcnn params
    gqcnn_params = config['gqcnn']
    im_crop_height = gqcnn_params['crop_height']
    im_crop_width = gqcnn_params['crop_width']
    im_final_height = gqcnn_params['final_height']
    im_final_width = gqcnn_params['final_width']
    cx_crop = float(im_crop_width) / 2
    cy_crop = float(im_crop_height) / 2

    # open database
    dataset_names = target_object_keys.keys()
    datasets = [database.dataset(dn) for dn in dataset_names]

    if CREATE_SUBSET:
        datasets = [
            dataset.subset(INDEX_START, INDEX_END) for dataset in datasets
        ]

    # set target objects
    for dataset in datasets:
        if target_object_keys[dataset.name] == 'all':
            target_object_keys[dataset.name] = dataset.object_keys

    # setup grasp params
    table_alignment_params = config['table_alignment']
    min_grasp_approach_offset = -np.deg2rad(
        table_alignment_params['max_approach_offset'])
    max_grasp_approach_offset = np.deg2rad(
        table_alignment_params['max_approach_offset'])
    max_grasp_approach_table_angle = np.deg2rad(
        table_alignment_params['max_approach_table_angle'])
    num_grasp_approach_samples = table_alignment_params[
        'num_approach_offset_samples']

    phi_offsets = []
    if max_grasp_approach_offset == min_grasp_approach_offset:
        phi_inc = 1
    elif num_grasp_approach_samples == 1:
        phi_inc = max_grasp_approach_offset - min_grasp_approach_offset + 1
    else:
        phi_inc = (max_grasp_approach_offset - min_grasp_approach_offset) / (
            num_grasp_approach_samples - 1)

    phi = min_grasp_approach_offset
    while phi <= max_grasp_approach_offset:
        phi_offsets.append(phi)
        phi += phi_inc

    # setup collision checking
    coll_check_params = config['collision_checking']
    approach_dist = coll_check_params['approach_dist']
    delta_approach = coll_check_params['delta_approach']
    table_offset = coll_check_params['table_offset']

    table_mesh_filename = coll_check_params['table_mesh_filename']
    if not os.path.isabs(table_mesh_filename):
        table_mesh_filename = os.path.join(
            os.path.dirname(os.path.realpath(__file__)), '..',
            table_mesh_filename)
    table_mesh = ObjFile(table_mesh_filename).read()

    # set tensor dataset config
    tensor_config = config['tensors']
    tensor_config['fields']['depth_ims_tf_table']['height'] = im_final_height
    tensor_config['fields']['depth_ims_tf_table']['width'] = im_final_width
    tensor_config['fields']['obj_masks']['height'] = im_final_height
    tensor_config['fields']['obj_masks']['width'] = im_final_width

    # add available metrics (assuming same are computed for all objects)
    metric_names = []
    dataset = datasets[0]
    obj_keys = dataset.object_keys
    if len(obj_keys) == 0:
        raise ValueError('No valid objects in dataset %s' % (dataset.name))

    obj = dataset[obj_keys[0]]
    grasps = dataset.grasps(obj.key, gripper=gripper.name)
    grasp_metrics = dataset.grasp_metrics(obj.key,
                                          grasps,
                                          gripper=gripper.name)
    metric_names = grasp_metrics[grasp_metrics.keys()[0]].keys()
    for metric_name in metric_names:
        tensor_config['fields'][metric_name] = {}
        tensor_config['fields'][metric_name]['dtype'] = 'float32'

    # init tensor dataset
    tensor_dataset = TensorDataset(output_dir, tensor_config)
    tensor_datapoint = tensor_dataset.datapoint_template

    # setup log file
    experiment_log_filename = os.path.join(output_dir,
                                           'dataset_generation.log')
    formatter = logging.Formatter('%(asctime)s %(levelname)s: %(message)s')
    hdlr = logging.FileHandler(experiment_log_filename)
    hdlr.setFormatter(formatter)
    logging.getLogger().addHandler(hdlr)
    root_logger = logging.getLogger()

    # copy config
    out_config_filename = os.path.join(output_dir, 'dataset_generation.json')
    ordered_dict_config = collections.OrderedDict()
    for key in config.keys():
        ordered_dict_config[key] = config[key]
    with open(out_config_filename, 'w') as outfile:
        json.dump(ordered_dict_config, outfile)

    # 1. Precompute the set of valid grasps for each stable pose:
    #    i) Perpendicular to the table
    #   ii) Collision-free along the approach direction

    # load grasps if they already exist
    grasp_cache_filename = os.path.join(output_dir, CACHE_FILENAME)
    if os.path.exists(grasp_cache_filename):
        logging.info('Loading grasp candidates from file')
        candidate_grasps_dict = pkl.load(open(grasp_cache_filename, 'rb'))
    # otherwise re-compute by reading from the database and enforcing constraints
    else:
        # create grasps dict
        candidate_grasps_dict = {}

        # loop through datasets and objects
        for dataset in datasets:
            logging.info('Reading dataset %s' % (dataset.name))
            for obj in dataset:
                if obj.key not in target_object_keys[dataset.name]:
                    continue

                # init candidate grasp storage
                candidate_grasps_dict[obj.key] = {}

                # setup collision checker
                collision_checker = GraspCollisionChecker(gripper)
                collision_checker.set_graspable_object(obj)

                # read in the stable poses of the mesh
                stable_poses = dataset.stable_poses(obj.key)
                for i, stable_pose in enumerate(stable_poses):
                    # render images if stable pose is valid
                    if stable_pose.p > stable_pose_min_p:
                        candidate_grasps_dict[obj.key][stable_pose.id] = []

                        # setup table in collision checker
                        T_obj_stp = stable_pose.T_obj_table.as_frames(
                            'obj', 'stp')
                        T_obj_table = obj.mesh.get_T_surface_obj(
                            T_obj_stp,
                            delta=table_offset).as_frames('obj', 'table')
                        T_table_obj = T_obj_table.inverse()

                        collision_checker.set_table(table_mesh_filename,
                                                    T_table_obj)

                        # read grasp and metrics
                        grasps = dataset.grasps(obj.key, gripper=gripper.name)
                        logging.info(
                            'Aligning %d grasps for object %s in stable %s' %
                            (len(grasps), obj.key, stable_pose.id))

                        # align grasps with the table
                        aligned_grasps = [
                            grasp.perpendicular_table(stable_pose)
                            for grasp in grasps
                        ]

                        # check grasp validity
                        logging.info(
                            'Checking collisions for %d grasps for object %s in stable %s'
                            % (len(grasps), obj.key, stable_pose.id))
                        for aligned_grasp in aligned_grasps:
                            # check angle with table plane and skip unaligned grasps
                            _, grasp_approach_table_angle, _ = aligned_grasp.grasp_angles_from_stp_z(
                                stable_pose)
                            perpendicular_table = (
                                np.abs(grasp_approach_table_angle) <
                                max_grasp_approach_table_angle)
                            if not perpendicular_table:
                                continue

                            # check whether any valid approach directions are collision free
                            collision_free = False
                            for phi_offset in phi_offsets:
                                rotated_grasp = aligned_grasp.grasp_y_axis_offset(
                                    phi_offset)
                                collides = collision_checker.collides_along_approach(
                                    rotated_grasp, approach_dist,
                                    delta_approach)
                                if not collides:
                                    collision_free = True
                                    break

                            # store if aligned to table
                            candidate_grasps_dict[obj.key][
                                stable_pose.id].append(
                                    GraspInfo(aligned_grasp, collision_free))

                            # visualize if specified
                            if collision_free and config['vis'][
                                    'candidate_grasps']:
                                logging.info('Grasp %d' % (aligned_grasp.id))
                                vis.figure()
                                vis.gripper_on_object(gripper, aligned_grasp,
                                                      obj,
                                                      stable_pose.T_obj_world)
                                vis.show()

        # save to file
        logging.info('Saving to file')
        pkl.dump(candidate_grasps_dict, open(grasp_cache_filename, 'wb'))

    # 2. Render a dataset of images and associate the gripper pose with image coordinates for each grasp in the Dex-Net database

    # setup variables
    obj_category_map = {}
    pose_category_map = {}

    cur_pose_label = 0
    cur_obj_label = 0
    cur_image_label = 0

    # render images for each stable pose of each object in the dataset
    render_modes = [RenderMode.SEGMASK, RenderMode.DEPTH_SCENE]
    for dataset in datasets:
        logging.info('Generating data for dataset %s' % (dataset.name))

        # iterate through all object keys
        object_keys = dataset.object_keys
        for obj_key in object_keys:
            obj = dataset[obj_key]
            obj.mesh.rescale(RESCALING_FACTOR)
            if obj.key not in target_object_keys[dataset.name]:
                continue

            # read in the stable poses of the mesh
            stable_poses = dataset.stable_poses(obj.key)

            if SAVE_ONE_OBJECT:
                # Save object mesh
                savefile = ObjFile("./data/meshes/dexnet/" + obj.key + ".obj")
                savefile.write(obj.mesh)
                # Save stable poses
                save_stp = StablePoseFile("./data/meshes/dexnet/" + obj.key +
                                          ".stp")
                save_stp.write(stable_poses)
                candidate_grasp_info = candidate_grasps_dict[obj.key][
                    stable_poses[0].id]
                print("Stable pose id:", stable_poses[0].id)
                candidate_grasps = [g.grasp for g in candidate_grasp_info]
                # Save candidate grasp info
                pkl.dump(
                    candidate_grasps_dict[obj.key],
                    open("./data/meshes/dexnet/" + obj.key + ".pkl", 'wb'))
                # Save grasp metrics
                grasp_metrics = dataset.grasp_metrics(obj.key,
                                                      candidate_grasps,
                                                      gripper=gripper.name)
                write_metrics = json.dumps(grasp_metrics)
                f = open("./data/meshes/dexnet/" + obj.key + ".json", "w")
                f.write(write_metrics)
                f.close()

            for i, stable_pose in enumerate(stable_poses):

                # render images if stable pose is valid
                if stable_pose.p > stable_pose_min_p:
                    # log progress
                    logging.info('Rendering images for object %s in %s' %
                                 (obj.key, stable_pose.id))

                    # add to category maps
                    if obj.key not in obj_category_map.keys():
                        obj_category_map[obj.key] = cur_obj_label
                    pose_category_map['%s_%s' %
                                      (obj.key,
                                       stable_pose.id)] = cur_pose_label

                    # read in candidate grasps and metrics
                    candidate_grasp_info = candidate_grasps_dict[obj.key][
                        stable_pose.id]
                    candidate_grasps = [g.grasp for g in candidate_grasp_info]
                    grasp_metrics = dataset.grasp_metrics(obj.key,
                                                          candidate_grasps,
                                                          gripper=gripper.name)

                    # compute object pose relative to the table
                    T_obj_stp = stable_pose.T_obj_table.as_frames('obj', 'stp')
                    T_obj_stp = obj.mesh.get_T_surface_obj(T_obj_stp)

                    # sample images from random variable
                    T_table_obj = RigidTransform(from_frame='table',
                                                 to_frame='obj')
                    scene_objs = {
                        'table': SceneObject(table_mesh, T_table_obj)
                    }
                    urv = UniformPlanarWorksurfaceImageRandomVariable(
                        obj.mesh,
                        render_modes,
                        'camera',
                        env_rv_params,
                        stable_pose=stable_pose,
                        scene_objs=scene_objs)

                    render_start = time.time()
                    render_samples = urv.rvs(
                        size=image_samples_per_stable_pose)
                    render_stop = time.time()
                    logging.info('Rendering images took %.3f sec' %
                                 (render_stop - render_start))

                    # visualize
                    if config['vis']['rendered_images']:
                        d = int(np.ceil(
                            np.sqrt(image_samples_per_stable_pose)))

                        #segmask
                        vis2d.figure()
                        for j, render_sample in enumerate(render_samples):
                            vis2d.subplot(d, d, j + 1)
                            vis2d.imshow(render_sample.renders[
                                RenderMode.SEGMASK].image)

                        # depth table
                        vis2d.figure()
                        for j, render_sample in enumerate(render_samples):
                            vis2d.subplot(d, d, j + 1)
                            vis2d.imshow(render_sample.renders[
                                RenderMode.DEPTH_SCENE].image)
                        vis2d.show()

                        if False:
                            # binary
                            fig = plt.figure(figsize=(8, 8))
                            fig.suptitle('SEGMASK')
                            for j, render_sample in enumerate(render_samples):
                                plt.subplot(d, d, j + 1)
                                plt.imshow(render_sample.renders[
                                    RenderMode.SEGMASK].image.data)

                            # depth table
                            fig = plt.figure(figsize=(8, 8))
                            fig.suptitle('DEPTH SCENE')
                            for j, render_sample in enumerate(render_samples):
                                plt.subplot(d, d, j + 1)
                                plt.imshow(render_sample.renders[
                                    RenderMode.DEPTH_SCENE].image.data)
                            plt.show()

                    # tally total amount of data
                    num_grasps = len(candidate_grasps)
                    num_images = image_samples_per_stable_pose
                    num_save = num_images * num_grasps
                    logging.info('Saving %d datapoints' % (num_save))

                    # for each candidate grasp on the object compute the projection
                    # of the grasp into image space
                    for render_sample in render_samples:
                        # read images
                        binary_im = render_sample.renders[
                            RenderMode.SEGMASK].image
                        depth_im_table = render_sample.renders[
                            RenderMode.DEPTH_SCENE].image
                        # read camera params
                        T_stp_camera = render_sample.camera.object_to_camera_pose
                        shifted_camera_intr = render_sample.camera.camera_intr

                        # read pixel offsets
                        cx = depth_im_table.center[1]
                        cy = depth_im_table.center[0]

                        # compute intrinsics for virtual camera of the final
                        # cropped and rescaled images
                        camera_intr_scale = float(im_final_height) / float(
                            im_crop_height)
                        cropped_camera_intr = shifted_camera_intr.crop(
                            im_crop_height, im_crop_width, cy, cx)
                        final_camera_intr = cropped_camera_intr.resize(
                            camera_intr_scale)

                        # create a thumbnail for each grasp
                        for grasp_info in candidate_grasp_info:
                            # read info
                            grasp = grasp_info.grasp
                            collision_free = grasp_info.collision_free

                            # get the gripper pose
                            T_obj_camera = T_stp_camera * T_obj_stp.as_frames(
                                'obj', T_stp_camera.from_frame)
                            grasp_2d = grasp.project_camera(
                                T_obj_camera, shifted_camera_intr)

                            # center images on the grasp, rotate to image x axis
                            dx = cx - grasp_2d.center.x
                            dy = cy - grasp_2d.center.y
                            translation = np.array([dy, dx])

                            binary_im_tf = binary_im.transform(
                                translation, grasp_2d.angle)
                            depth_im_tf_table = depth_im_table.transform(
                                translation, grasp_2d.angle)

                            # crop to image size
                            binary_im_tf = binary_im_tf.crop(
                                im_crop_height, im_crop_width)
                            depth_im_tf_table = depth_im_tf_table.crop(
                                im_crop_height, im_crop_width)

                            # resize to image size
                            binary_im_tf = binary_im_tf.resize(
                                (im_final_height, im_final_width),
                                interp='nearest')
                            depth_im_tf_table = depth_im_tf_table.resize(
                                (im_final_height, im_final_width))

                            # visualize the transformed images
                            if config['vis']['grasp_images']:
                                grasp_center = Point(
                                    depth_im_tf_table.center,
                                    frame=final_camera_intr.frame)

                                # plot 2D grasp image
                                grasp_center = Point(
                                    depth_im_tf_table.center,
                                    frame=final_camera_intr.frame)
                                tf_grasp_2d = Grasp2D(
                                    grasp_center,
                                    0,
                                    grasp_2d.depth,
                                    width=gripper.max_width,
                                    camera_intr=final_camera_intr)

                                vis2d.figure()
                                vis2d.subplot(2, 2, 1)
                                vis2d.imshow(binary_im)
                                vis2d.grasp(grasp_2d)
                                vis2d.subplot(2, 2, 2)
                                vis2d.imshow(depth_im_table)
                                vis2d.grasp(grasp_2d)
                                vis2d.subplot(2, 2, 3)
                                vis2d.imshow(binary_im_tf)
                                vis2d.grasp(tf_grasp_2d)
                                vis2d.subplot(2, 2, 4)
                                vis2d.imshow(depth_im_tf_table)
                                vis2d.grasp(tf_grasp_2d)
                                vis2d.title('Coll Free? %d' %
                                            (grasp_info.collision_free))
                                vis2d.show()

                                if False:
                                    plt.figure(figsize=(8, 8))
                                    plt.subplot(2, 2, 1)
                                    plt.imshow(binary_im.data)
                                    plt.title('Binary Image')

                                    plt.subplot(2, 2, 2)
                                    plt.imshow(depth_im_table.data)

                                    plt.subplot(2, 2, 3)
                                    plt.imshow(binary_im_tf.data)

                                    plt.subplot(2, 2, 4)
                                    plt.imshow(depth_im_tf_table.data)

                                    plt.title('Coll Free? %d' %
                                              (grasp_info.collision_free))
                                    plt.show()
                                    plt.close()

                                # plot 3D visualization

# Whooza

                                fig = plt.figure()
                                ax = fig.add_subplot(111,
                                                     projection='3d',
                                                     transform=T_obj_camera)

                                object_vertices = obj.mesh.trimesh.vertices

                                table_vertices = table_mesh.trimesh.vertices
                                #				ax.plot_trisurf(table_vertices[:,0],table_vertices[:,1],triangles=table_mesh.trimesh.faces,Z=table_vertices[:,2],color='g')
                                ax.plot_trisurf(
                                    object_vertices[:, 0],
                                    object_vertices[:, 1],
                                    triangles=obj.mesh.trimesh.faces,
                                    Z=object_vertices[:, 2],
                                    color='b')
                                #				Axes3D(fig,rect=(-0.2,-0.2,0.4,0.4),transform=T_obj_camera)
                                plt.show()

                                if False:
                                    vis.figure()
                                    T_obj_world = vis.mesh_stable_pose(
                                        obj.mesh.trimesh,
                                        stable_pose.T_obj_world,
                                        style='surface',
                                        dim=0.5)
                                    vis.gripper(gripper,
                                                grasp,
                                                T_obj_world,
                                                color=(0.3, 0.3, 0.3))
                                    vis.show()

                            # form hand pose array
                            hand_pose = np.r_[grasp_2d.center.y,
                                              grasp_2d.center.x,
                                              grasp_2d.depth, grasp_2d.angle,
                                              grasp_2d.center.y -
                                              shifted_camera_intr.cy,
                                              grasp_2d.center.x -
                                              shifted_camera_intr.cx,
                                              grasp_2d.width_px]

                            # store to data buffers
                            tensor_datapoint[
                                'depth_ims_tf_table'] = depth_im_tf_table.raw_data
                            tensor_datapoint[
                                'obj_masks'] = binary_im_tf.raw_data
                            tensor_datapoint['hand_poses'] = hand_pose
                            tensor_datapoint['collision_free'] = collision_free
                            tensor_datapoint['obj_labels'] = cur_obj_label
                            tensor_datapoint['pose_labels'] = cur_pose_label
                            tensor_datapoint['image_labels'] = cur_image_label

                            for metric_name, metric_val in grasp_metrics[
                                    grasp.id].iteritems():
                                coll_free_metric = (
                                    1 * collision_free) * metric_val
                                tensor_datapoint[
                                    metric_name] = coll_free_metric
                            tensor_dataset.add(tensor_datapoint)

                        # update image label
                        cur_image_label += 1

                    # update pose label
                    cur_pose_label += 1

                    # force clean up
                    gc.collect()

            # update object label
            cur_obj_label += 1

            # force clean up
            gc.collect()

    # save last file
    tensor_dataset.flush()

    # save category mappings
    obj_cat_filename = os.path.join(output_dir, 'object_category_map.json')
    json.dump(obj_category_map, open(obj_cat_filename, 'w'))
    pose_cat_filename = os.path.join(output_dir, 'pose_category_map.json')
    json.dump(pose_category_map, open(pose_cat_filename, 'w'))
示例#15
0
    def sample_grasp(self, env, mesh_obj, vis=True):
        # Setup sensor.
        #camera_intr = CameraIntrinsics.load(camera_intr_filename)

        # Read images.
        # get depth image from camera

        inpaint_rescale_factor = 1.0
        segmask_filename = None

        _, center, extents, obj_xquat, bbox_xpos = self.get_bbox_properties(
            env, mesh_obj)
        camera_pos = copy.deepcopy(center)
        camera_pos[2] += 0.5 * extents[2] + 0.2

        env.set_camera(camera_pos,
                       np.array([0.7071068, 0, 0, -0.7071068]),
                       camera_name=f"ext_camera_0")
        rgb, depth = env.render_from_camera(int(self.config.camera_img_height),
                                            int(self.config.camera_img_width),
                                            camera_name=f"ext_camera_0")
        # enforce zoom out

        from scipy.interpolate import interp2d

        center_x = self.config.camera_img_height / 2 + 1
        center_y = self.config.camera_img_width / 2 + 1
        img_height = self.config.camera_img_height
        img_width = self.config.camera_img_width
        xdense = np.linspace(0, img_height - 1, img_height)
        ydense = np.linspace(0, img_width - 1, img_width)
        xintr = (xdense - center_x) * (1.0 / self.rescale_factor) + center_x
        yintr = (ydense - center_y) * (1.0 / self.rescale_factor) + center_y
        xintr[xintr < 0] = 0
        xintr[xintr > (img_height - 1)] = img_height - 1
        yintr[yintr < 0] = 0
        yintr[yintr > (img_width - 1)] = img_width - 1

        fr = interp2d(xdense, ydense, rgb[:, :, 0], kind="linear")
        rgb_r_new = fr(xintr, yintr)
        fg = interp2d(xdense, ydense, rgb[:, :, 1], kind="linear")
        rgb_g_new = fg(xintr, yintr)
        fb = interp2d(xdense, ydense, rgb[:, :, 2], kind="linear")
        rgb_b_new = fb(xintr, yintr)
        rgb_new = np.stack([rgb_r_new, rgb_g_new, rgb_b_new], axis=2)

        fd = interp2d(xdense, ydense, depth, kind="linear")
        depth_new = fd(xintr, yintr)

        #from skimage.transform import resize
        #rgb22, depth2 = env.render_from_camera(int(self.config.camera_img_height) , int(self.config.camera_img_width), camera_name=f"ext_camera_0")

        #import ipdb; ipdb.set_trace()

        # visualize the interpolation
        #import imageio
        #imageio.imwrite(f"tmp/rgb_{self.iter_id}.png", rgb)
        #imageio.imwrite(f"tmp/rgb2_{self.iter_id}.png", rgb_new)
        #imageio.imwrite(f"tmp/depth_{self.iter_id}.png", depth)
        #imageio.imwrite(f"tmp/depth2_{self.iter_id}.png", depth_new)
        #import ipdb; ipdb.set_trace()

        rgb = rgb_new
        depth = depth_new

        depth = depth * self.rescale_factor

        # rgb: 128 x 128 x 1
        # depth: 128 x 128 x 1
        scaled_camera_fov_y = self.config.camera_fov_y
        aspect = 1
        scaled_fovx = 2 * np.arctan(
            np.tan(np.deg2rad(scaled_camera_fov_y) * 0.5) * aspect)
        scaled_fovx = np.rad2deg(scaled_fovx)
        scaled_fovy = scaled_camera_fov_y

        cx = self.config.camera_img_width * 0.5
        cy = self.config.camera_img_height * 0.5
        scaled_fx = cx / np.tan(np.deg2rad(
            scaled_fovx / 2.)) * (self.rescale_factor)
        scaled_fy = cy / np.tan(np.deg2rad(
            scaled_fovy / 2.)) * (self.rescale_factor)

        camera_intr = CameraIntrinsics(frame='phoxi',
                                       fx=scaled_fx,
                                       fy=scaled_fy,
                                       cx=self.config.camera_img_width * 0.5,
                                       cy=self.config.camera_img_height * 0.5,
                                       height=self.config.camera_img_height,
                                       width=self.config.camera_img_width)

        depth_im = DepthImage(depth, frame=camera_intr.frame)
        color_im = ColorImage(np.zeros([depth_im.height, depth_im.width,
                                        3]).astype(np.uint8),
                              frame=camera_intr.frame)

        # Optionally read a segmask.

        valid_px_mask = depth_im.invalid_pixel_mask().inverse()
        segmask = valid_px_mask

        # Inpaint.
        depth_im = depth_im.inpaint(rescale_factor=inpaint_rescale_factor)

        # Create state.
        rgbd_im = RgbdImage.from_color_and_depth(color_im, depth_im)
        state = RgbdImageState(rgbd_im, camera_intr, segmask=segmask)

        # Query policy.
        policy_start = time.time()
        action = self.policy(state)
        print("Planning took %.3f sec" % (time.time() - policy_start))
        # numpy array with 2 values
        grasp_center = action.grasp.center._data[:, 0]  #(width, depth)
        grasp_depth = action.grasp.depth * (1 / self.rescale_factor)
        grasp_angle = action.grasp.angle  #np.pi*0.3

        if self.config.data_collection_mode:

            self.current_grasp = action.grasp

            depth_im = state.rgbd_im.depth
            scale = 1.0
            depth_im_scaled = depth_im.resize(scale)
            translation = scale * np.array([
                depth_im.center[0] - grasp_center[1],
                depth_im.center[1] - grasp_center[0]
            ])
            im_tf = depth_im_scaled
            im_tf = depth_im_scaled.transform(translation, grasp_angle)
            im_tf = im_tf.crop(self.gqcnn_image_size, self.gqcnn_image_size)

            # get the patch
            self.current_patch = im_tf.raw_data

        XYZ_origin, gripper_quat = self.compute_grasp_pts_from_grasp_sample(
            grasp_center, grasp_depth, grasp_angle, env)

        return XYZ_origin[:, 0], gripper_quat

        # Vis final grasp.
        if vis:
            from visualization import Visualizer2D as vis
            vis.figure(size=(10, 10))
            vis.imshow(rgbd_im.depth,
                       vmin=self.policy_config["vis"]["vmin"],
                       vmax=self.policy_config["vis"]["vmax"])
            vis.grasp(action.grasp,
                      scale=2.5,
                      show_center=False,
                      show_axis=True)
            vis.title("Planned grasp at depth {0:.3f}m with Q={1:.3f}".format(
                action.grasp.depth, action.q_value))
            vis.show(f"tmp/grasp2_{mesh_obj.name}_{self.iter_id}.png")

            vis.figure(size=(10, 10))

            vis.imshow(im_tf,
                       vmin=self.policy_config["vis"]["vmin"],
                       vmax=self.policy_config["vis"]["vmax"])
            vis.show(f"tmp/cropd_{mesh_obj.name}_{self.iter_id}.png")

        import ipdb
        ipdb.set_trace()

        return XYZ_origin[:, 0], gripper_quat

        import ipdb
        ipdb.set_trace()
示例#16
0
    def _sample_antipodal_grasps(self,
                                 depth_im,
                                 camera_intr,
                                 num_samples,
                                 segmask=None,
                                 visualize=False,
                                 constraint_fn=None):
        """Sample a set of 2D grasp candidates from a depth image by finding
        depth edges, then uniformly sampling point pairs and keeping only
        antipodal grasps with width less than the maximum allowable.

        Parameters
        ----------
        depth_im : :obj:"perception.DepthImage"
            Depth image to sample from.
        camera_intr : :obj:`perception.CameraIntrinsics`
            Intrinsics of the camera that captured the images.
        num_samples : int
            Number of grasps to sample.
        segmask : :obj:`perception.BinaryImage`
            Binary image segmenting out the object of interest.
        visualize : bool
            Whether or not to show intermediate samples (for debugging).
        constraint_fn : :obj:`GraspConstraintFn`
            Constraint function to apply to grasps.

        Returns
        -------
        :obj:`list` of :obj:`Grasp2D`
            List of 2D grasp candidates.
        """
        # Compute edge pixels.
        edge_start = time()
        depth_im = depth_im.apply(snf.gaussian_filter,
                                  sigma=self._depth_grad_gaussian_sigma)
        scale_factor = self._rescale_factor
        depth_im_downsampled = depth_im.resize(scale_factor)
        depth_im_threshed = depth_im_downsampled.threshold_gradients(
            self._depth_grad_thresh)
        edge_pixels = (1.0 / scale_factor) * depth_im_threshed.zero_pixels()
        edge_pixels = edge_pixels.astype(np.int16)

        depth_im_mask = depth_im.copy()
        if segmask is not None:
            edge_pixels = np.array(
                [p for p in edge_pixels if np.any(segmask[p[0], p[1]] > 0)])
            depth_im_mask = depth_im.mask_binary(segmask)

        # Re-threshold edges if there are too few.
        if edge_pixels.shape[0] < self._min_num_edge_pixels:
            self._logger.info("Too few edge pixels!")
            depth_im_threshed = depth_im.threshold_gradients(
                self._depth_grad_thresh)
            edge_pixels = depth_im_threshed.zero_pixels()
            edge_pixels = edge_pixels.astype(np.int16)
            depth_im_mask = depth_im.copy()
            if segmask is not None:
                edge_pixels = np.array([
                    p for p in edge_pixels if np.any(segmask[p[0], p[1]] > 0)
                ])
                depth_im_mask = depth_im.mask_binary(segmask)

        num_pixels = edge_pixels.shape[0]
        self._logger.debug("Depth edge detection took %.3f sec" %
                           (time() - edge_start))
        self._logger.debug("Found %d edge pixels" % (num_pixels))

        # Compute point cloud.
        point_cloud_im = camera_intr.deproject_to_image(depth_im_mask)

        # Compute_max_depth.
        depth_data = depth_im_mask.data[depth_im_mask.data > 0]
        if depth_data.shape[0] == 0:
            return []

        min_depth = np.min(depth_data) + self._min_depth_offset
        max_depth = np.max(depth_data) + self._max_depth_offset

        # Compute surface normals.
        normal_start = time()
        edge_normals = self._surface_normals(depth_im, edge_pixels)
        self._logger.debug("Normal computation took %.3f sec" %
                           (time() - normal_start))

        if visualize:
            edge_pixels = edge_pixels[::2, :]
            edge_normals = edge_normals[::2, :]

            vis.figure()
            vis.subplot(1, 3, 1)
            vis.imshow(depth_im)
            if num_pixels > 0:
                vis.scatter(edge_pixels[:, 1], edge_pixels[:, 0], s=2, c="b")

            X = [pix[1] for pix in edge_pixels]
            Y = [pix[0] for pix in edge_pixels]
            U = [3 * pix[1] for pix in edge_normals]
            V = [-3 * pix[0] for pix in edge_normals]
            plt.quiver(X,
                       Y,
                       U,
                       V,
                       units="x",
                       scale=0.25,
                       width=0.5,
                       zorder=2,
                       color="r")
            vis.title("Edge pixels and normals")

            vis.subplot(1, 3, 2)
            vis.imshow(depth_im_threshed)
            vis.title("Edge map")

            vis.subplot(1, 3, 3)
            vis.imshow(segmask)
            vis.title("Segmask")
            vis.show()

        # Exit if no edge pixels.
        if num_pixels == 0:
            return []

        # Form set of valid candidate point pairs.
        pruning_start = time()
        max_grasp_width_px = Grasp2D(Point(np.zeros(2)),
                                     0.0,
                                     min_depth,
                                     width=self._gripper_width,
                                     camera_intr=camera_intr).width_px
        normal_ip = edge_normals.dot(edge_normals.T)
        dists = ssd.squareform(ssd.pdist(edge_pixels))
        valid_indices = np.where(
            (normal_ip < -np.cos(np.arctan(self._friction_coef)))
            & (dists < max_grasp_width_px) & (dists > 0.0))
        valid_indices = np.c_[valid_indices[0], valid_indices[1]]
        self._logger.debug("Normal pruning %.3f sec" %
                           (time() - pruning_start))

        # Raise exception if no antipodal pairs.
        num_pairs = valid_indices.shape[0]
        if num_pairs == 0:
            return []

        # Prune out grasps.
        contact_points1 = edge_pixels[valid_indices[:, 0], :]
        contact_points2 = edge_pixels[valid_indices[:, 1], :]
        contact_normals1 = edge_normals[valid_indices[:, 0], :]
        contact_normals2 = edge_normals[valid_indices[:, 1], :]
        v = contact_points1 - contact_points2
        v_norm = np.linalg.norm(v, axis=1)
        v = v / np.tile(v_norm[:, np.newaxis], [1, 2])
        ip1 = np.sum(contact_normals1 * v, axis=1)
        ip2 = np.sum(contact_normals2 * (-v), axis=1)
        ip1[ip1 > 1.0] = 1.0
        ip1[ip1 < -1.0] = -1.0
        ip2[ip2 > 1.0] = 1.0
        ip2[ip2 < -1.0] = -1.0
        beta1 = np.arccos(ip1)
        beta2 = np.arccos(ip2)
        alpha = np.arctan(self._friction_coef)
        antipodal_indices = np.where((beta1 < alpha) & (beta2 < alpha))[0]

        # Raise exception if no antipodal pairs.
        num_pairs = antipodal_indices.shape[0]
        if num_pairs == 0:
            return []
        sample_size = min(self._max_rejection_samples, num_pairs)
        grasp_indices = np.random.choice(antipodal_indices,
                                         size=sample_size,
                                         replace=False)
        self._logger.debug("Grasp comp took %.3f sec" %
                           (time() - pruning_start))

        # Compute grasps.
        sample_start = time()
        k = 0
        grasps = []
        while k < sample_size and len(grasps) < num_samples:
            grasp_ind = grasp_indices[k]
            p1 = contact_points1[grasp_ind, :]
            p2 = contact_points2[grasp_ind, :]
            n1 = contact_normals1[grasp_ind, :]
            n2 = contact_normals2[grasp_ind, :]
            #            width = np.linalg.norm(p1 - p2)
            k += 1

            # Compute center and axis.
            grasp_center = (p1 + p2) // 2
            grasp_axis = p2 - p1
            grasp_axis = grasp_axis / np.linalg.norm(grasp_axis)
            grasp_theta = np.pi / 2
            if grasp_axis[1] != 0:
                grasp_theta = np.arctan2(grasp_axis[0], grasp_axis[1])
            grasp_center_pt = Point(np.array(
                [grasp_center[1], grasp_center[0]]),
                                    frame=camera_intr.frame)

            # Compute grasp points in 3D.
            x1 = point_cloud_im[p1[0], p1[1]]
            x2 = point_cloud_im[p2[0], p2[1]]
            if np.linalg.norm(x2 - x1) > self._gripper_width:
                continue

            # Perturb.
            if self._grasp_center_sigma > 0.0:
                grasp_center_pt = grasp_center_pt + ss.multivariate_normal.rvs(
                    cov=self._grasp_center_sigma * np.diag(np.ones(2)))
            if self._grasp_angle_sigma > 0.0:
                grasp_theta = grasp_theta + ss.norm.rvs(
                    scale=self._grasp_angle_sigma)

            # Check center px dist from boundary.
            if (grasp_center[0] < self._min_dist_from_boundary
                    or grasp_center[1] < self._min_dist_from_boundary
                    or grasp_center[0] >
                    depth_im.height - self._min_dist_from_boundary
                    or grasp_center[1] >
                    depth_im.width - self._min_dist_from_boundary):
                continue

            # Sample depths.
            for i in range(self._depth_samples_per_grasp):
                # Get depth in the neighborhood of the center pixel.
                depth_win = depth_im.data[grasp_center[0] -
                                          self._h:grasp_center[0] +
                                          self._h, grasp_center[1] -
                                          self._w:grasp_center[1] + self._w]
                center_depth = np.min(depth_win)
                if center_depth == 0 or np.isnan(center_depth):
                    continue

                # Sample depth between the min and max.
                min_depth = center_depth + self._min_depth_offset
                max_depth = center_depth + self._max_depth_offset
                sample_depth = min_depth + (max_depth -
                                            min_depth) * np.random.rand()
                candidate_grasp = Grasp2D(grasp_center_pt,
                                          grasp_theta,
                                          sample_depth,
                                          width=self._gripper_width,
                                          camera_intr=camera_intr,
                                          contact_points=[p1, p2],
                                          contact_normals=[n1, n2])

                if visualize:
                    vis.figure()
                    vis.imshow(depth_im)
                    vis.grasp(candidate_grasp)
                    vis.scatter(p1[1], p1[0], c="b", s=25)
                    vis.scatter(p2[1], p2[0], c="b", s=25)
                    vis.show()

                grasps.append(candidate_grasp)

        # Return sampled grasps.
        self._logger.debug("Loop took %.3f sec" % (time() - sample_start))
        return grasps
示例#17
0
        d_image = np.array(rgbd_im.depth.data)
        #print rgbd_im.depth.shape

        #TODO :BUILD BOTTON

        for g, q in zip(grasps, q_values):
            print g.center, g.width, g.angle
            #print q
            if True:

                vis.figure()  #size=(10,10))
                vis.imshow(
                    rgbd_im.depth
                )  #,vmin=policy_config['vis']['vmin'],vmax=policy_config['vis']['vmax'])
                vis.grasp(g, scale=1, show_center=True, show_axis=False)
                #vis.savefig("/home/lvianell/Desktop/Lorenzo_report/datasets/grasp_figures/test.png", bbox_inches='tight', pad_inches=0)
                vis.title(
                    'Planned grasp at depth {0:.3f}m with Q={1:.3f}'.format(
                        g.depth, q))
                vis.show()

                #grasp_image = cv2.imread("/home/lvianell/Desktop/Lorenzo_report/datasets/grasp_figures/test.png",0)
                rows, cols, canal = rgb_image.shape
                DIM = 50  #diminsion resulting matrix= DIM*2
                LEN_GRASP = 20
                M = cv2.getRotationMatrix2D((int(g.center.x), int(g.center.y)),
                                            math.degrees(g.angle), 1)

                dst = cv2.warpAffine(rgb_image, M, (cols, rows))
                #cv2.line(dst,(int(g.center.x)-LEN_GRASP,int(g.center.y)),(int(g.center.x)+LEN_GRASP,int(g.center.y)),(255,255,255),1)
示例#18
0
    def _action(self, state):
        """ Plans the grasp with the highest probability of success on
        the given RGB-D image.

        Attributes
        ----------
        state : :obj:`RgbdImageState`
            image to plan grasps on

        Returns
        -------
        :obj:`GraspAction`
            grasp to execute
        """
        # check valid input
        if not isinstance(state, RgbdImageState):
            raise ValueError('Must provide an RGB-D image state.')

        # parse state
        seed_set_start = time()
        rgbd_im = state.rgbd_im
        depth_im = rgbd_im.depth
        camera_intr = state.camera_intr
        segmask = state.segmask
        point_cloud_im = camera_intr.deproject_to_image(depth_im)
        normal_cloud_im = point_cloud_im.normal_cloud_im()

        # sample grasps
        grasps = self._grasp_sampler.sample(
            rgbd_im,
            camera_intr,
            self._num_seed_samples,
            segmask=segmask,
            visualize=self.config['vis']['grasp_sampling'],
            seed=self._seed)

        num_grasps = len(grasps)
        if num_grasps == 0:
            logging.warning('No valid grasps could be found')
            raise NoValidGraspsException()

        grasp_type = 'parallel_jaw'
        if isinstance(grasps[0], SuctionPoint2D):
            grasp_type = 'suction'

        logging.info('Sampled %d grasps' % (len(grasps)))
        logging.info('Computing the seed set took %.3f sec' %
                     (time() - seed_set_start))

        # iteratively refit and sample
        for j in range(self._num_iters):
            logging.info('CEM iter %d' % (j))

            # predict grasps
            predict_start = time()
            q_values = self._grasp_quality_fn(state,
                                              grasps,
                                              params=self._config)
            logging.info('Prediction took %.3f sec' % (time() - predict_start))

            # sort grasps
            resample_start = time()
            q_values_and_indices = zip(q_values, np.arange(num_grasps))
            q_values_and_indices.sort(key=lambda x: x[0], reverse=True)

            if self.config['vis']['grasp_candidates']:
                # display each grasp on the original image, colored by predicted success
                norm_q_values = q_values  #(q_values - np.min(q_values)) / (np.max(q_values) - np.min(q_values))
                vis.figure(size=(FIGSIZE, FIGSIZE))
                vis.imshow(rgbd_im.depth,
                           vmin=self.config['vis']['vmin'],
                           vmax=self.config['vis']['vmax'])
                for grasp, q in zip(grasps, norm_q_values):
                    vis.grasp(grasp,
                              scale=2.0,
                              jaw_width=2.0,
                              show_center=False,
                              show_axis=True,
                              color=plt.cm.RdYlGn(q))
                vis.title('Sampled grasps iter %d' % (j))
                filename = None
                if self._logging_dir is not None:
                    filename = os.path.join(self._logging_dir,
                                            'cem_iter_%d.png' % (j))
                vis.show(filename)

            # fit elite set
            elite_start = time()
            num_refit = max(int(np.ceil(self._gmm_refit_p * num_grasps)), 1)
            elite_q_values = [i[0] for i in q_values_and_indices[:num_refit]]
            elite_grasp_indices = [
                i[1] for i in q_values_and_indices[:num_refit]
            ]
            elite_grasps = [grasps[i] for i in elite_grasp_indices]
            elite_grasp_arr = np.array([g.feature_vec for g in elite_grasps])

            if self.config['vis']['elite_grasps']:
                # display each grasp on the original image, colored by predicted success
                norm_q_values = (elite_q_values - np.min(elite_q_values)) / (
                    np.max(elite_q_values) - np.min(elite_q_values))
                vis.figure(size=(FIGSIZE, FIGSIZE))
                vis.imshow(rgbd_im.depth,
                           vmin=self.config['vis']['vmin'],
                           vmax=self.config['vis']['vmax'])
                for grasp, q in zip(elite_grasps, norm_q_values):
                    vis.grasp(grasp,
                              scale=1.5,
                              show_center=False,
                              show_axis=True,
                              color=plt.cm.RdYlGn(q))
                vis.title('Elite grasps iter %d' % (j))
                filename = None
                if self._logging_dir is not None:
                    filename = os.path.join(self._logging_dir,
                                            'elite_set_iter_%d.png' % (j))
                vis.show(filename)

            # normalize elite set
            elite_grasp_mean = np.mean(elite_grasp_arr, axis=0)
            elite_grasp_std = np.std(elite_grasp_arr, axis=0)
            elite_grasp_std[elite_grasp_std == 0] = 1e-6
            elite_grasp_arr = (elite_grasp_arr -
                               elite_grasp_mean) / elite_grasp_std
            logging.info('Elite set computation took %.3f sec' %
                         (time() - elite_start))

            # fit a GMM to the top samples
            num_components = max(
                int(np.ceil(self._gmm_component_frac * num_refit)), 1)
            uniform_weights = (1.0 / num_components) * np.ones(num_components)
            gmm = GaussianMixture(n_components=num_components,
                                  weights_init=uniform_weights,
                                  reg_covar=self._gmm_reg_covar)
            train_start = time()
            gmm.fit(elite_grasp_arr)
            logging.info('GMM fitting with %d components took %.3f sec' %
                         (num_components, time() - train_start))

            # sample the next grasps
            grasps = []
            loop_start = time()
            num_tries = 0
            while len(
                    grasps
            ) < self._num_gmm_samples and num_tries < self._max_resamples_per_iteration:
                # sample from GMM
                sample_start = time()
                grasp_vecs, _ = gmm.sample(n_samples=self._num_gmm_samples)
                grasp_vecs = elite_grasp_std * grasp_vecs + elite_grasp_mean
                logging.info('GMM sampling took %.3f sec' %
                             (time() - sample_start))

                # convert features to grasps and store if in segmask
                for k, grasp_vec in enumerate(grasp_vecs):
                    feature_start = time()
                    if grasp_type == 'parallel_jaw':
                        # form grasp object
                        grasp = Grasp2D.from_feature_vec(
                            grasp_vec,
                            width=self._gripper_width,
                            camera_intr=camera_intr)
                    elif grasp_type == 'suction':
                        # read depth and approach axis
                        u = int(min(max(grasp_vec[1], 0), depth_im.height - 1))
                        v = int(min(max(grasp_vec[0], 0), depth_im.width - 1))
                        grasp_depth = depth_im[u, v]

                        # approach_axis
                        grasp_axis = -normal_cloud_im[u, v]

                        # form grasp object
                        grasp = SuctionPoint2D.from_feature_vec(
                            grasp_vec,
                            camera_intr=camera_intr,
                            depth=grasp_depth,
                            axis=grasp_axis)
                    logging.debug('Feature vec took %.5f sec' %
                                  (time() - feature_start))

                    bounds_start = time()
                    # check in bounds
                    if state.segmask is None or \
                        (grasp.center.y >= 0 and grasp.center.y < state.segmask.height and \
                         grasp.center.x >= 0 and grasp.center.x < state.segmask.width and \
                         np.any(state.segmask[int(grasp.center.y), int(grasp.center.x)] != 0) and \
                         grasp.approach_angle < self._max_approach_angle):

                        # check validity according to filters
                        grasps.append(grasp)
                    logging.debug('Bounds took %.5f sec' %
                                  (time() - bounds_start))
                    num_tries += 1

            # check num grasps
            num_grasps = len(grasps)
            if num_grasps == 0:
                logging.warning('No valid grasps could be found')
                raise NoValidGraspsException()
            logging.info('Resample loop took %.3f sec' % (time() - loop_start))
            logging.info('Resampling took %.3f sec' %
                         (time() - resample_start))

        # predict final set of grasps
        predict_start = time()
        q_values = self._grasp_quality_fn(state, grasps, params=self._config)
        logging.info('Final prediction took %.3f sec' %
                     (time() - predict_start))

        if self.config['vis']['grasp_candidates']:
            # display each grasp on the original image, colored by predicted success
            norm_q_values = q_values  #(q_values - np.min(q_values)) / (np.max(q_values) - np.min(q_values))
            vis.figure(size=(FIGSIZE, FIGSIZE))
            vis.imshow(rgbd_im.depth,
                       vmin=self.config['vis']['vmin'],
                       vmax=self.config['vis']['vmax'])
            for grasp, q in zip(grasps, norm_q_values):
                vis.grasp(grasp,
                          scale=2.0,
                          jaw_width=2.0,
                          show_center=False,
                          show_axis=True,
                          color=plt.cm.RdYlGn(q))
            vis.title('Final sampled grasps')
            filename = None
            if self._logging_dir is not None:
                filename = os.path.join(self._logging_dir, 'final_grasps.png')
            vis.show(filename)

        # select grasp
        index = self.select(grasps, q_values)
        grasp = grasps[index]
        q_value = q_values[index]
        if self.config['vis']['grasp_plan']:
            vis.figure()
            vis.imshow(rgbd_im.depth,
                       vmin=self.config['vis']['vmin'],
                       vmax=self.config['vis']['vmax'])
            vis.grasp(grasp,
                      scale=5.0,
                      show_center=False,
                      show_axis=True,
                      jaw_width=1.0,
                      grasp_axis_width=0.2)
            vis.title('Best Grasp: d=%.3f, q=%.3f' % (grasp.depth, q_value))
            filename = None
            if self._logging_dir is not None:
                filename = os.path.join(self._logging_dir, 'planned_grasp.png')
            vis.show(filename)

        # form return image
        image = state.rgbd_im.depth
        if isinstance(self._grasp_quality_fn, GQCnnQualityFunction):
            image_arr, _ = self._grasp_quality_fn.grasps_to_tensors([grasp],
                                                                    state)
            image = DepthImage(image_arr[0, ...], frame=state.rgbd_im.frame)

        # return action
        action = GraspAction(grasp, q_value, image)
        return action
示例#19
0
    def _action(self, state):
        """ Plans the grasp with the highest probability of success on
        the given RGB-D image.

        Attributes
        ----------
        state : :obj:`RgbdImageState`
            image to plan grasps on

        Returns
        -------
        :obj:`GraspAction`
            grasp to execute
        """
        # take the greedy action with prob 1 - epsilon
        if np.random.rand() > self.epsilon:
            logging.debug('Taking greedy action')
            return CrossEntropyRobustGraspingPolicy.action(self, state)

        # otherwise take a random action
        logging.debug('Taking random action')

        # check valid input
        if not isinstance(state, RgbdImageState):
            raise ValueError('Must provide an RGB-D image state.')

        # parse state
        rgbd_im = state.rgbd_im
        camera_intr = state.camera_intr
        segmask = state.segmask

        # sample random antipodal grasps
        grasps = self._grasp_sampler.sample(
            rgbd_im,
            camera_intr,
            self._num_seed_samples,
            segmask=segmask,
            visualize=self.config['vis']['grasp_sampling'],
            seed=self._seed)

        num_grasps = len(grasps)
        if num_grasps == 0:
            logging.warning('No valid grasps could be found')
            raise NoValidGraspsException()

        # choose a grasp uniformly at random
        grasp_ind = np.random.choice(num_grasps, size=1)[0]
        grasp = grasps[grasp_ind]
        depth = grasp.depth

        # create transformed image
        image_tensor, pose_tensor = self.grasps_to_tensors([grasp], state)
        image = DepthImage(image_tensor[0, ...])

        # predict prob success
        output_arr = self.gqcnn.predict(image_tensor, pose_tensor)
        q_value = output_arr[0, -1]

        # visualize planned grasp
        if self.config['vis']['grasp_plan']:
            scale_factor = float(self.gqcnn.im_width) / float(self._crop_width)
            scaled_camera_intr = camera_intr.resize(scale_factor)
            vis_grasp = Grasp2D(Point(image.center),
                                0.0,
                                depth,
                                width=self._gripper_width,
                                camera_intr=scaled_camera_intr)
            vis.figure()
            vis.imshow(image)
            vis.grasp(vis_grasp, scale=1.5, show_center=False, show_axis=True)
            vis.title('Best Grasp: d=%.3f, q=%.3f' % (depth, q_value))
            vis.show()

        # return action
        return GraspAction(grasp, q_value, image)
示例#20
0
    def _sample_antipodal_grasps(self,
                                 depth_im,
                                 camera_intr,
                                 num_samples,
                                 segmask=None,
                                 visualize=False):
        """
        Sample a set of 2D grasp candidates from a depth image by finding depth
        edges, then uniformly sampling point pairs and keeping only antipodal
        grasps with width less than the maximum allowable.

        Parameters
        ----------
        depth_im : :obj:'perception.DepthImage'
            Depth image to sample from
        camera_intr : :obj:`perception.CameraIntrinsics`
            intrinsics of the camera that captured the images
        num_samples : int
            number of grasps to sample
        segmask : :obj:`perception.BinaryImage`
            binary image segmenting out the object of interest
        visualize : bool
            whether or not to show intermediate samples (for debugging)
 
        Returns
        -------
        :obj:`list` of :obj:`Grasp2D`
            list of 2D grasp candidates
        """
        # compute edge pixels
        edge_start = time()
        depth_im = depth_im.apply(snf.gaussian_filter,
                                  sigma=self._depth_grad_gaussian_sigma)
        scale_factor = self._rescale_factor
        depth_im_downsampled = depth_im.resize(scale_factor)
        depth_im_threshed = depth_im_downsampled.threshold_gradients(
            self._depth_grad_thresh)
        edge_pixels = (1.0 / scale_factor) * depth_im_threshed.zero_pixels()
        edge_pixels = edge_pixels.astype(np.int16)

        depth_im_mask = depth_im.copy()
        if segmask is not None:
            edge_pixels = np.array(
                [p for p in edge_pixels if np.any(segmask[p[0], p[1]] > 0)])
            depth_im_mask = depth_im.mask_binary(segmask)

        # re-threshold edges if there are too few
        if edge_pixels.shape[0] < self._min_num_edge_pixels:
            logging.info('Too few edge pixels!')
            depth_im_threshed = depth_im.threshold_gradients(
                self._depth_grad_thresh)
            edge_pixels = depth_im_threshed.zero_pixels()
            edge_pixels = edge_pixels.astype(np.int16)
            depth_im_mask = depth_im.copy()
            if segmask is not None:
                edge_pixels = np.array([
                    p for p in edge_pixels if np.any(segmask[p[0], p[1]] > 0)
                ])
                depth_im_mask = depth_im.mask_binary(segmask)

        num_pixels = edge_pixels.shape[0]
        logging.debug('Depth edge detection took %.3f sec' %
                      (time() - edge_start))
        logging.debug('Found %d edge pixels' % (num_pixels))

        # exit if no edge pixels
        if num_pixels == 0:
            return []

        # compute_max_depth
        min_depth = np.min(depth_im_mask.data[
            depth_im_mask.data > 0]) + self._min_depth_offset
        max_depth = np.max(depth_im_mask.data[
            depth_im_mask.data > 0]) + self._max_depth_offset

        # compute surface normals
        normal_start = time()
        edge_normals = self._surface_normals(depth_im, edge_pixels)
        logging.debug('Normal computation took %.3f sec' %
                      (time() - normal_start))

        if visualize:
            vis.figure()
            vis.subplot(1, 3, 1)
            vis.imshow(depth_im)
            if num_pixels > 0:
                vis.scatter(edge_pixels[:, 1], edge_pixels[:, 0], s=10, c='b')

            X = [pix[1] for pix in edge_pixels]
            Y = [pix[0] for pix in edge_pixels]
            U = [10 * pix[1] for pix in edge_normals]
            V = [-10 * pix[0] for pix in edge_normals]
            plt.quiver(X, Y, U, V, units='x', scale=0.5, zorder=2, color='g')
            vis.title('Edge pixels and normals')

            vis.subplot(1, 3, 2)
            vis.imshow(depth_im_threshed)
            vis.title('Edge map')

            vis.subplot(1, 3, 3)
            vis.imshow(segmask)
            vis.title('Segmask')
            vis.show()

        # form set of valid candidate point pairs
        pruning_start = time()
        max_grasp_width_px = Grasp2D(Point(np.zeros(2)),
                                     0.0,
                                     min_depth,
                                     width=self._gripper_width,
                                     camera_intr=camera_intr).width_px
        normal_ip = edge_normals.dot(edge_normals.T)
        dists = ssd.squareform(ssd.pdist(edge_pixels))
        valid_indices = np.where(
            (normal_ip < -np.cos(np.arctan(self._friction_coef)))
            & (dists < max_grasp_width_px) & (dists > 0.0))
        valid_indices = np.c_[valid_indices[0], valid_indices[1]]
        logging.debug('Normal pruning %.3f sec' % (time() - pruning_start))

        # raise exception if no antipodal pairs
        num_pairs = valid_indices.shape[0]
        if num_pairs == 0:
            return []

        # prune out grasps
        contact_points1 = edge_pixels[valid_indices[:, 0], :]
        contact_points2 = edge_pixels[valid_indices[:, 1], :]
        contact_normals1 = edge_normals[valid_indices[:, 0], :]
        contact_normals2 = edge_normals[valid_indices[:, 1], :]
        v = contact_points1 - contact_points2
        v_norm = np.linalg.norm(v, axis=1)
        v = v / np.tile(v_norm[:, np.newaxis], [1, 2])
        ip1 = np.sum(contact_normals1 * v, axis=1)
        ip2 = np.sum(contact_normals2 * (-v), axis=1)
        ip1[ip1 > 1.0] = 1.0
        ip1[ip1 < -1.0] = -1.0
        ip2[ip2 > 1.0] = 1.0
        ip2[ip2 < -1.0] = -1.0
        beta1 = np.arccos(ip1)
        beta2 = np.arccos(ip2)
        alpha = np.arctan(self._friction_coef)
        antipodal_indices = np.where((beta1 < alpha) & (beta2 < alpha))[0]

        # raise exception if no antipodal pairs
        num_pairs = antipodal_indices.shape[0]
        if num_pairs == 0:
            return []
        sample_size = min(self._max_rejection_samples, num_pairs)
        grasp_indices = np.random.choice(antipodal_indices,
                                         size=sample_size,
                                         replace=False)
        logging.debug('Grasp comp took %.3f sec' % (time() - pruning_start))

        # compute grasps
        sample_start = time()
        k = 0
        grasps = []
        while k < sample_size and len(grasps) < num_samples:
            grasp_ind = grasp_indices[k]
            p1 = contact_points1[grasp_ind, :]
            p2 = contact_points2[grasp_ind, :]
            n1 = contact_normals1[grasp_ind, :]
            n2 = contact_normals2[grasp_ind, :]
            width = np.linalg.norm(p1 - p2)
            k += 1

            # compute center and axis
            grasp_center = (p1 + p2) / 2
            grasp_axis = p2 - p1
            grasp_axis = grasp_axis / np.linalg.norm(grasp_axis)
            grasp_theta = np.pi / 2
            if grasp_axis[1] != 0:
                grasp_theta = np.arctan(grasp_axis[0] / grasp_axis[1])
            grasp_center_pt = Point(
                np.array([grasp_center[1], grasp_center[0]]))

            # check center px dist from boundary
            if grasp_center[0] < self._min_dist_from_boundary or \
               grasp_center[1] < self._min_dist_from_boundary or \
               grasp_center[0] > depth_im.height - self._min_dist_from_boundary or \
               grasp_center[1] > depth_im.width - self._min_dist_from_boundary:
                continue

            # sample depths
            for i in range(self._depth_samples_per_grasp):
                # get depth in the neighborhood of the center pixel
                depth_win = depth_im.data[grasp_center[0] -
                                          self._h:grasp_center[0] + self._h,
                                          grasp_center[1] -
                                          self._w:grasp_center[1] + self._w]
                center_depth = np.min(depth_win)
                if center_depth == 0 or np.isnan(center_depth):
                    continue

                # sample depth between the min and max
                min_depth = np.min(center_depth) + self._min_depth_offset
                max_depth = np.max(center_depth) + self._max_depth_offset
                sample_depth = min_depth + (max_depth -
                                            min_depth) * np.random.rand()
                candidate_grasp = Grasp2D(grasp_center_pt,
                                          grasp_theta,
                                          sample_depth,
                                          width=self._gripper_width,
                                          camera_intr=camera_intr,
                                          contact_points=[p1, p2],
                                          contact_normals=[n1, n2])

                if visualize:
                    vis.figure()
                    vis.imshow(depth_im)
                    vis.grasp(candidate_grasp)
                    vis.scatter(p1[1], p1[0], c='b', s=25)
                    vis.scatter(p2[1], p2[0], c='b', s=25)
                    vis.show()

                grasps.append(candidate_grasp)
        # return sampled grasps
        logging.debug('Loop took %.3f sec' % (time() - sample_start))
        return grasps