def main(): if not os.path.exists('./result'): os.makedirs('./result') question_vocab, answer_vocab = {}, {} if os.path.exists('./result/vdict.json') and os.path.exists('./result/adict.json'): print 'restoring vocab' with open('./result/vdict.json','r') as f: question_vocab = json.load(f) with open('./result/adict.json','r') as f: answer_vocab = json.load(f) else: question_vocab, answer_vocab = make_vocab_files() with open('./result/vdict.json','w') as f: json.dump(question_vocab, f) with open('./result/adict.json','w') as f: json.dump(answer_vocab, f) print 'question vocab size:', len(question_vocab) print 'answer vocab size:', len(answer_vocab) with open('./result/proto_train.prototxt', 'w') as f: f.write(str(qlstm(config.TRAIN_DATA_SPLITS, config.BATCH_SIZE, \ config.MAX_WORDS_IN_QUESTION, len(question_vocab)))) with open('./result/proto_test.prototxt', 'w') as f: f.write(str(qlstm('val', config.VAL_BATCH_SIZE, \ config.MAX_WORDS_IN_QUESTION, len(question_vocab)))) raise caffe.set_device(config.GPU_ID) caffe.set_mode_gpu() solver = caffe.get_solver('./qlstm_solver.prototxt') train_loss = np.zeros(config.MAX_ITERATIONS) results = [] for it in range(config.MAX_ITERATIONS): solver.step(1) # store the train loss train_loss[it] = solver.net.blobs['loss'].data if it % config.PRINT_INTERVAL == 0: print 'Iteration:', it c_mean_loss = train_loss[it-config.PRINT_INTERVAL:it].mean() print 'Train loss:', c_mean_loss if it != 0 and it % config.VALIDATE_INTERVAL == 0: solver.test_nets[0].save('./result/tmp.caffemodel') print 'Validating...' test_loss, acc_overall, acc_per_ques, acc_per_ans = exec_validation(config.GPU_ID, 'val', it=it) print 'Test loss:', test_loss print 'Accuracy:', acc_overall results.append([it, c_mean_loss, test_loss, acc_overall, acc_per_ques, acc_per_ans]) best_result_idx = np.array([x[3] for x in results]).argmax() print 'Best accuracy of', results[best_result_idx][3], 'was at iteration', results[best_result_idx][0] drawgraph(results)
def main(): if not os.path.exists('./result'): os.makedirs('./result') question_vocab, answer_vocab = {}, {} if os.path.exists('./result/vdict.json') and os.path.exists('./result/adict.json'): print 'restoring vocab' with open('./result/vdict.json','r') as f: question_vocab = json.load(f) with open('./result/adict.json','r') as f: answer_vocab = json.load(f) else: question_vocab, answer_vocab = make_vocab_files() with open('./result/vdict.json','w') as f: json.dump(question_vocab, f) with open('./result/adict.json','w') as f: json.dump(answer_vocab, f) print 'question vocab size:', len(question_vocab) print 'answer vocab size:', len(answer_vocab) with open('./result/proto_train.prototxt', 'w') as f: f.write(str(qlstm(config.TRAIN_DATA_SPLITS, config.BATCH_SIZE, \ config.MAX_WORDS_IN_QUESTION, len(question_vocab)))) with open('./result/proto_test.prototxt', 'w') as f: f.write(str(qlstm('val', config.BATCH_SIZE, \ config.MAX_WORDS_IN_QUESTION, len(question_vocab)))) caffe.set_device(config.GPU_ID) caffe.set_mode_gpu() solver = caffe.get_solver('./qlstm_solver.prototxt') train_loss = np.zeros(config.MAX_ITERATIONS) results = [] for it in range(config.MAX_ITERATIONS): solver.step(1) # store the train loss train_loss[it] = solver.net.blobs['loss'].data if it % config.PRINT_INTERVAL == 0: print 'Iteration:', it c_mean_loss = train_loss[it-config.PRINT_INTERVAL:it].mean() print 'Train loss:', c_mean_loss if it % config.VALIDATE_INTERVAL == 0: print 'Validating...' solver.test_nets[0].save('./result/tmp.caffemodel') test_loss, acc_overall, acc_per_ques, acc_per_ans = exec_validation(config.GPU_ID, 'val', it=it) print 'Test loss:', test_loss print 'Accuracy:', acc_overall results.append([it, c_mean_loss, test_loss, acc_overall, acc_per_ques, acc_per_ans]) best_result_idx = np.array([x[3] for x in results]).argmax() print 'Best accuracy of', results[best_result_idx][3], 'was at iteration', results[best_result_idx][0] drawgraph(results)
def main(): #Make Result Fold if not os.path.exists('./result'): os.makedirs('./result') #Make Empty Dict Variable question_vocab, answer_vocab = {}, {} if os.path.exists('./result/vdict.json') and os.path.exists( './result/adict.json'): print 'restoring vocab' with open('./result/vdict.json', 'r') as f: question_vocab = json.load(f) with open('./result/adict.json', 'r') as f: answer_vocab = json.load(f) else: #Load TrainData question_vocab, answer_vocab = make_vocab_files() with open('./result/vdict.json', 'w') as f: json.dump(question_vocab, f) with open('./result/adict.json', 'w') as f: json.dump(answer_vocab, f) #json.dump Encoding to string object print 'question vocab size:', len(question_vocab) print 'answer vocab size:', len(answer_vocab) #################Read ConfigFile + Make Network############################## with open('./result/proto_train.prototxt', 'w') as f: f.write(str(qlstm(config.TRAIN_DATA_SPLITS, config.BATCH_SIZE, \ config.MAX_WORDS_IN_QUESTION, len(question_vocab)))) with open('./result/proto_test.prototxt', 'w') as f: f.write(str(qlstm('val', config.VAL_BATCH_SIZE, \ config.MAX_WORDS_IN_QUESTION, len(question_vocab)))) ####################################################################### #당시 caffe -python 버전은 multi gpu지원하지않음 c++interface only #현재는 python도 지원 caffe.set_device(config.GPU_ID) caffe.set_mode_gpu() solver = caffe.get_solver('./qlstm_solver.prototxt') #solver.prototxt 학습 config를 Load할때 사용. train_loss = np.zeros(config.MAX_ITERATIONS) results = [] for it in range(config.MAX_ITERATIONS): solver.step(1) #step : forward backward update 3가지를 실시한다. # store the train loss train_loss[it] = solver.net.blobs['loss'].data if it % config.PRINT_INTERVAL == 0: print 'Iteration:', it c_mean_loss = train_loss[it - config.PRINT_INTERVAL:it].mean() print 'Train loss:', c_mean_loss if it != 0 and it % config.VALIDATE_INTERVAL == 0: solver.test_nets[0].save('./result/tmp.caffemodel') print 'Validating...' test_loss, acc_overall, acc_per_ques, acc_per_ans = exec_validation( config.GPU_ID, 'val', it=it) print 'Test loss:', test_loss print 'Accuracy:', acc_overall results.append([ it, c_mean_loss, test_loss, acc_overall, acc_per_ques, acc_per_ans ]) best_result_idx = np.array([x[3] for x in results]).argmax() print 'Best accuracy of', results[best_result_idx][ 3], 'was at iteration', results[best_result_idx][0] drawgraph(results)