class ParallelFeatureExtractorTestNew(unittest.TestCase): def tearDown(self): if hasattr(self, 'fextractor'): self.fextractor.remove_results() pass def test_run_vmaf_fextractor_with_resampling(self): ref_path = config.ROOT + "/resource/yuv/src01_hrc00_576x324.yuv" dis_path = config.ROOT + "/resource/yuv/src01_hrc01_576x324.yuv" asset = Asset(dataset="test", content_id=0, asset_id=1, workdir_root=config.ROOT + "/workspace/workdir", ref_path=ref_path, dis_path=dis_path, asset_dict={ 'width': 576, 'height': 324, 'quality_width': 160, 'quality_height': 90 }) asset_original = Asset(dataset="test", content_id=0, asset_id=2, workdir_root=config.ROOT + "/workspace/workdir", ref_path=ref_path, dis_path=ref_path, asset_dict={ 'width': 576, 'height': 324, 'quality_width': 160, 'quality_height': 90 }) self.fextractor = VmafFeatureExtractor([asset, asset_original], None, fifo_mode=False) self.fextractor.run(parallelize=False) results = self.fextractor.results self.assertAlmostEqual(results[0]['VMAF_feature_vif_score'], 0.782546520833, places=4) self.assertAlmostEqual(results[0]['VMAF_feature_motion_score'], 1.3216766875, places=4) self.assertAlmostEqual(results[0]['VMAF_feature_adm_score'], 0.98229347916666665, places=4) self.assertAlmostEqual(results[0]['VMAF_feature_ansnr_score'], 28.0085990417, places=4) self.assertAlmostEqual(results[1]['VMAF_feature_vif_score'], 1.0, places=4) self.assertAlmostEqual(results[1]['VMAF_feature_motion_score'], 1.3216766875, places=4) self.assertAlmostEqual(results[1]['VMAF_feature_adm_score'], 1.0, places=4) self.assertAlmostEqual(results[1]['VMAF_feature_ansnr_score'], 31.811350125, places=4) def test_run_vmaf_fextractor_with_cropping(self): # crop_cmd: 288:162:144:81 - crop to 288x162 with upper-left pixel # starting at coordinate (144, 81) ref_path = config.ROOT + "/resource/yuv/src01_hrc00_576x324.yuv" dis_path = config.ROOT + "/resource/yuv/src01_hrc01_576x324.yuv" asset = Asset(dataset="test", content_id=0, asset_id=1, workdir_root=config.ROOT + "/workspace/workdir", ref_path=ref_path, dis_path=dis_path, asset_dict={ 'width': 576, 'height': 324, 'crop_cmd': '288:162:144:81', 'quality_width': 288, 'quality_height': 162, }) asset_original = Asset(dataset="test", content_id=0, asset_id=2, workdir_root=config.ROOT + "/workspace/workdir", ref_path=ref_path, dis_path=ref_path, asset_dict={ 'width': 576, 'height': 324, 'crop_cmd': '288:162:144:81', 'quality_width': 288, 'quality_height': 162, }) self.fextractor = VmafFeatureExtractor([asset, asset_original], None, fifo_mode=False) self.fextractor.run(parallelize=False) results = self.fextractor.results self.assertAlmostEqual(results[0]['VMAF_feature_vif_score'], 0.45365762500000012, places=4) self.assertAlmostEqual(results[0]['VMAF_feature_motion_score'], 2.8779373333333331, places=4) self.assertAlmostEqual(results[0]['VMAF_feature_adm2_score'], 0.93894987889874548, places=4) self.assertAlmostEqual(results[0]['VMAF_feature_ansnr_score'], 23.942050354166668, places=4) self.assertAlmostEqual(results[1]['VMAF_feature_vif_score'], 1.0, places=4) self.assertAlmostEqual(results[1]['VMAF_feature_motion_score'], 2.8779373333333331, places=4) self.assertAlmostEqual(results[1]['VMAF_feature_adm2_score'], 1.0, places=4) self.assertAlmostEqual(results[1]['VMAF_feature_ansnr_score'], 31.71648420833333, places=4) def test_run_vmaf_fextractor_with_padding(self): # pad_cmd: iw+100:ih+100:50:50 - pad to (iw+100)x(ih+100), where iw is # input width, ih is input height, and starting point is (-50, -50) ref_path = config.ROOT + "/resource/yuv/src01_hrc00_576x324.yuv" dis_path = config.ROOT + "/resource/yuv/src01_hrc01_576x324.yuv" asset = Asset(dataset="test", content_id=0, asset_id=1, workdir_root=config.ROOT + "/workspace/workdir", ref_path=ref_path, dis_path=dis_path, asset_dict={ 'width': 576, 'height': 324, 'pad_cmd': 'iw+100:ih+100:50:50', 'quality_width': 676, 'quality_height': 424, }) asset_original = Asset(dataset="test", content_id=0, asset_id=2, workdir_root=config.ROOT + "/workspace/workdir", ref_path=ref_path, dis_path=ref_path, asset_dict={ 'width': 576, 'height': 324, 'pad_cmd': 'iw+100:ih+100:50:50', 'quality_width': 676, 'quality_height': 424, }) self.fextractor = VmafFeatureExtractor([asset, asset_original], None, fifo_mode=True) self.fextractor.run(parallelize=False) results = self.fextractor.results self.assertAlmostEqual(results[0]['VMAF_feature_vif_score'], 0.51023564583333325, places=4) self.assertAlmostEqual(results[0]['VMAF_feature_motion_score'], 2.6397702083333332, places=4) self.assertAlmostEqual(results[0]['VMAF_feature_adm2_score'], 0.94112949409549829, places=4) self.assertAlmostEqual(results[0]['VMAF_feature_ansnr_score'], 26.893242291666667, places=4) self.assertAlmostEqual(results[1]['VMAF_feature_vif_score'], 1.0, places=4) self.assertAlmostEqual(results[1]['VMAF_feature_motion_score'], 2.6397702083333332, places=4) self.assertAlmostEqual(results[1]['VMAF_feature_adm2_score'], 1.0, places=4) self.assertAlmostEqual(results[1]['VMAF_feature_ansnr_score'], 34.306043416666668, places=4) def test_run_vmaf_fextractor_with_cropping_and_padding_to_original_wh( self): # crop_cmd: 288:162:144:81 - crop to the center 288x162 image # pad_cmd: iw+288:ih+162:144:81 - pad back to the original size ref_path = config.ROOT + "/resource/yuv/src01_hrc00_576x324.yuv" dis_path = config.ROOT + "/resource/yuv/src01_hrc01_576x324.yuv" asset = Asset(dataset="test", content_id=0, asset_id=1, workdir_root=config.ROOT + "/workspace/workdir", ref_path=ref_path, dis_path=dis_path, asset_dict={ 'width': 576, 'height': 324, 'crop_cmd': '288:162:144:81', 'pad_cmd': 'iw+288:ih+162:144:81', 'quality_width': 576, 'quality_height': 324, }) asset_original = Asset(dataset="test", content_id=0, asset_id=2, workdir_root=config.ROOT + "/workspace/workdir", ref_path=ref_path, dis_path=ref_path, asset_dict={ 'width': 576, 'height': 324, 'crop_cmd': '288:162:144:81', 'pad_cmd': 'iw+288:ih+162:144:81', 'quality_width': 576, 'quality_height': 324, }) self.fextractor = VmafFeatureExtractor([asset, asset_original], None, fifo_mode=True) self.fextractor.run(parallelize=True) results = self.fextractor.results self.assertAlmostEqual(results[0]['VMAF_feature_vif_score'], 0.64106379166666672, places=4) self.assertAlmostEqual(results[0]['VMAF_feature_motion_score'], 0.7203213958333331, places=4) self.assertAlmostEqual(results[0]['VMAF_feature_adm2_score'], 0.94700196017089999, places=4) self.assertAlmostEqual(results[0]['VMAF_feature_ansnr_score'], 32.78451041666667, places=4) self.assertAlmostEqual(results[1]['VMAF_feature_vif_score'], 1.0, places=4) self.assertAlmostEqual(results[1]['VMAF_feature_motion_score'], 0.7203213958333331, places=4) self.assertAlmostEqual(results[1]['VMAF_feature_adm2_score'], 1.0, places=4) self.assertAlmostEqual(results[1]['VMAF_feature_ansnr_score'], 40.280504208333333, places=4) def test_run_strred_fextractor(self): print 'test on running STRRED feature extractor...' ref_path = config.ROOT + "/resource/yuv/src01_hrc00_576x324.yuv" dis_path = config.ROOT + "/resource/yuv/src01_hrc01_576x324.yuv" asset = Asset(dataset="test", content_id=0, asset_id=0, workdir_root=config.ROOT + "/workspace/workdir", ref_path=ref_path, dis_path=dis_path, asset_dict={ 'width': 576, 'height': 324 }) asset_original = Asset(dataset="test", content_id=0, asset_id=1, workdir_root=config.ROOT + "/workspace/workdir", ref_path=ref_path, dis_path=ref_path, asset_dict={ 'width': 576, 'height': 324 }) self.fextractor = StrredFeatureExtractor([asset, asset_original], None, fifo_mode=True, result_store=None) self.fextractor.run(parallelize=True) results = self.fextractor.results self.assertAlmostEqual(results[0]['STRRED_feature_srred_score'], 4.8845008541666664, places=4) self.assertAlmostEqual(results[0]['STRRED_feature_trred_score'], 8.9429378333333336, places=4) self.assertAlmostEqual(results[0]['STRRED_feature_strred_score'], 44.002554138184131, places=4) self.assertAlmostEqual(results[1]['STRRED_feature_srred_score'], 0.0, places=4) self.assertAlmostEqual(results[1]['STRRED_feature_trred_score'], 0.0, places=4) self.assertAlmostEqual(results[1]['STRRED_feature_strred_score'], 0.0, places=4) def test_run_strred_fextractor_blackframes(self): print 'test on running STRRED feature extractor on flat frames...' ref_path = config.ROOT + "/resource/yuv/flat_1920_1080_0.yuv" dis_path = config.ROOT + "/resource/yuv/flat_1920_1080_10.yuv" asset = Asset(dataset="test", content_id=0, asset_id=0, workdir_root=config.ROOT + "/workspace/workdir", ref_path=ref_path, dis_path=dis_path, asset_dict={ 'width': 576, 'height': 324 }) asset_original = Asset(dataset="test", content_id=0, asset_id=1, workdir_root=config.ROOT + "/workspace/workdir", ref_path=ref_path, dis_path=ref_path, asset_dict={ 'width': 576, 'height': 324 }) from vmaf.core.result_store import FileSystemResultStore result_store = FileSystemResultStore(logger=None) self.fextractor = StrredFeatureExtractor([asset, asset_original], None, fifo_mode=True, result_store=result_store) print ' running for the first time with fresh calculation...' self.fextractor.run(parallelize=True) result0, result1 = self.fextractor.results import os self.assertTrue( os.path.exists(result_store._get_result_file_path(result0))) self.assertTrue( os.path.exists(result_store._get_result_file_path(result1))) print ' running for the second time with stored results...' self.fextractor.run(parallelize=True) results = self.fextractor.results # ignore NaN for result in results: result.set_score_aggregate_method(ListStats.nonemean) self.assertAlmostEqual(results[0]['STRRED_feature_srred_score'], 5829.2644469999996, places=4) self.assertAlmostEqual(results[0]['STRRED_feature_trred_score'], 13086.862734, places=4) self.assertAlmostEqual(results[0]['STRRED_feature_strred_score'], 62207779.127545856, places=4) self.assertAlmostEqual(results[1]['STRRED_feature_srred_score'], 0.0, places=4) self.assertAlmostEqual(results[1]['STRRED_feature_trred_score'], 0.0, places=4) self.assertAlmostEqual(results[1]['STRRED_feature_strred_score'], 0.0, places=4)
class ParallelMatlabFeatureExtractorTestNew(unittest.TestCase): def tearDown(self): if hasattr(self, 'fextractor'): self.fextractor.remove_results() pass def test_run_strred_fextractor(self): print 'test on running STRRED feature extractor...' ref_path = VmafConfig.test_resource_path("yuv", "src01_hrc00_576x324.yuv") dis_path = VmafConfig.test_resource_path("yuv", "src01_hrc01_576x324.yuv") asset = Asset(dataset="test", content_id=0, asset_id=0, workdir_root=VmafConfig.workdir_path(), ref_path=ref_path, dis_path=dis_path, asset_dict={'width':576, 'height':324}) asset_original = Asset(dataset="test", content_id=0, asset_id=1, workdir_root=VmafConfig.workdir_path(), ref_path=ref_path, dis_path=ref_path, asset_dict={'width':576, 'height':324}) self.fextractor = StrredFeatureExtractor( [asset, asset_original], None, fifo_mode=True, result_store=None ) self.fextractor.run(parallelize=True) results = self.fextractor.results self.assertAlmostEqual(results[0]['STRRED_feature_srred_score'], 3.0114681041666671, places=4) self.assertAlmostEqual(results[0]['STRRED_feature_trred_score'], 7.3039486249999994, places=4) self.assertAlmostEqual(results[0]['STRRED_feature_strred_score'], 21.995608318659482, places=4) self.assertAlmostEqual(results[1]['STRRED_feature_srred_score'], 0.0, places=4) self.assertAlmostEqual(results[1]['STRRED_feature_trred_score'], 0.0, places=4) self.assertAlmostEqual(results[1]['STRRED_feature_strred_score'], 0.0, places=4) def test_run_strred_fextractor_blackframes(self): print 'test on running STRRED feature extractor on flat frames...' ref_path = VmafConfig.test_resource_path("yuv", "flat_1920_1080_0.yuv") dis_path = VmafConfig.test_resource_path("yuv", "flat_1920_1080_10.yuv") asset = Asset(dataset="test", content_id=0, asset_id=0, workdir_root=VmafConfig.workdir_path(), ref_path=ref_path, dis_path=dis_path, asset_dict={'width':576, 'height':324}) asset_original = Asset(dataset="test", content_id=0, asset_id=1, workdir_root=VmafConfig.workdir_path(), ref_path=ref_path, dis_path=ref_path, asset_dict={'width':576, 'height':324}) from vmaf.core.result_store import FileSystemResultStore result_store = FileSystemResultStore(logger=None) self.fextractor = StrredFeatureExtractor( [asset, asset_original], None, fifo_mode=True, result_store=result_store ) print ' running for the first time with fresh calculation...' self.fextractor.run(parallelize=True) result0, result1 = self.fextractor.results import os self.assertTrue(os.path.exists(result_store._get_result_file_path(result0))) self.assertTrue(os.path.exists(result_store._get_result_file_path(result1))) print ' running for the second time with stored results...' self.fextractor.run(parallelize=True) results = self.fextractor.results # ignore NaN for result in results: result.set_score_aggregate_method(ListStats.nonemean) self.assertAlmostEqual(results[0]['STRRED_feature_srred_score'], 1220.5679849999999, places=4) self.assertAlmostEqual(results[0]['STRRED_feature_trred_score'], 50983.3097155, places=4) self.assertAlmostEqual(results[0]['STRRED_feature_strred_score'], 62228595.6081, places=4) self.assertAlmostEqual(results[1]['STRRED_feature_srred_score'], 0.0, places=4) self.assertAlmostEqual(results[1]['STRRED_feature_trred_score'], 0.0, places=4) self.assertAlmostEqual(results[1]['STRRED_feature_strred_score'], 0.0, places=4)
class ParallelFeatureExtractorTestNew(unittest.TestCase): def tearDown(self): if hasattr(self, 'fextractor'): self.fextractor.remove_results() pass def test_run_vmaf_fextractor_with_resampling(self): ref_path = VmafConfig.test_resource_path("yuv", "src01_hrc00_576x324.yuv") dis_path = VmafConfig.test_resource_path("yuv", "src01_hrc01_576x324.yuv") asset = Asset(dataset="test", content_id=0, asset_id=1, workdir_root=VmafConfig.workdir_path(), ref_path=ref_path, dis_path=dis_path, asset_dict={'width':576, 'height':324, 'quality_width':160, 'quality_height':90}) asset_original = Asset(dataset="test", content_id=0, asset_id=2, workdir_root=VmafConfig.workdir_path(), ref_path=ref_path, dis_path=ref_path, asset_dict={'width':576, 'height':324, 'quality_width':160, 'quality_height':90}) self.fextractor = VmafFeatureExtractor( [asset, asset_original], None, fifo_mode=False) self.fextractor.run(parallelize=False) results = self.fextractor.results self.assertAlmostEqual(results[0]['VMAF_feature_vif_score'], 0.782546520833, places=4) self.assertAlmostEqual(results[0]['VMAF_feature_motion_score'],1.3216766875, places=4) self.assertAlmostEqual(results[0]['VMAF_feature_adm_score'], 0.98229347916666665, places=4) self.assertAlmostEqual(results[0]['VMAF_feature_ansnr_score'], 28.0085990417, places=4) self.assertAlmostEqual(results[1]['VMAF_feature_vif_score'], 1.0, places=4) self.assertAlmostEqual(results[1]['VMAF_feature_motion_score'], 1.3216766875, places=4) self.assertAlmostEqual(results[1]['VMAF_feature_adm_score'], 1.0, places=4) self.assertAlmostEqual(results[1]['VMAF_feature_ansnr_score'], 31.811350125, places=4) def test_run_vmaf_fextractor_with_cropping(self): # crop_cmd: 288:162:144:81 - crop to 288x162 with upper-left pixel # starting at coordinate (144, 81) ref_path = VmafConfig.test_resource_path("yuv", "src01_hrc00_576x324.yuv") dis_path = VmafConfig.test_resource_path("yuv", "src01_hrc01_576x324.yuv") asset = Asset(dataset="test", content_id=0, asset_id=1, workdir_root=VmafConfig.workdir_path(), ref_path=ref_path, dis_path=dis_path, asset_dict={'width':576, 'height':324, 'crop_cmd':'288:162:144:81', 'quality_width':288, 'quality_height':162, }) asset_original = Asset(dataset="test", content_id=0, asset_id=2, workdir_root=VmafConfig.workdir_path(), ref_path=ref_path, dis_path=ref_path, asset_dict={'width':576, 'height':324, 'crop_cmd':'288:162:144:81', 'quality_width':288, 'quality_height':162, }) self.fextractor = VmafFeatureExtractor( [asset, asset_original], None, fifo_mode=False) self.fextractor.run(parallelize=False) results = self.fextractor.results self.assertAlmostEqual(results[0]['VMAF_feature_vif_score'], 0.45365762500000012, places=4) self.assertAlmostEqual(results[0]['VMAF_feature_motion_score'], 2.8779373333333331, places=4) self.assertAlmostEqual(results[0]['VMAF_feature_adm2_score'],0.93894987889874548, places=4) self.assertAlmostEqual(results[0]['VMAF_feature_ansnr_score'], 23.942050354166668, places=4) self.assertAlmostEqual(results[1]['VMAF_feature_vif_score'], 1.0, places=4) self.assertAlmostEqual(results[1]['VMAF_feature_motion_score'], 2.8779373333333331, places=4) self.assertAlmostEqual(results[1]['VMAF_feature_adm2_score'], 1.0, places=4) self.assertAlmostEqual(results[1]['VMAF_feature_ansnr_score'], 31.71648420833333, places=4) def test_run_vmaf_fextractor_with_padding(self): # pad_cmd: iw+100:ih+100:50:50 - pad to (iw+100)x(ih+100), where iw is # input width, ih is input height, and starting point is (-50, -50) ref_path = VmafConfig.test_resource_path("yuv", "src01_hrc00_576x324.yuv") dis_path = VmafConfig.test_resource_path("yuv", "src01_hrc01_576x324.yuv") asset = Asset(dataset="test", content_id=0, asset_id=1, workdir_root=VmafConfig.workdir_path(), ref_path=ref_path, dis_path=dis_path, asset_dict={'width':576, 'height':324, 'pad_cmd': 'iw+100:ih+100:50:50', 'quality_width':676, 'quality_height':424, }) asset_original = Asset(dataset="test", content_id=0, asset_id=2, workdir_root=VmafConfig.workdir_path(), ref_path=ref_path, dis_path=ref_path, asset_dict={'width':576, 'height':324, 'pad_cmd': 'iw+100:ih+100:50:50', 'quality_width':676, 'quality_height':424, }) self.fextractor = VmafFeatureExtractor( [asset, asset_original], None, fifo_mode=True) self.fextractor.run(parallelize=False) results = self.fextractor.results self.assertAlmostEqual(results[0]['VMAF_feature_vif_score'], 0.51023564583333325, places=4) self.assertAlmostEqual(results[0]['VMAF_feature_motion_score'], 2.6397702083333332, places=4) self.assertAlmostEqual(results[0]['VMAF_feature_adm2_score'],0.94112949409549829, places=4) self.assertAlmostEqual(results[0]['VMAF_feature_ansnr_score'], 26.893242291666667, places=4) self.assertAlmostEqual(results[1]['VMAF_feature_vif_score'], 1.0, places=4) self.assertAlmostEqual(results[1]['VMAF_feature_motion_score'], 2.6397702083333332, places=4) self.assertAlmostEqual(results[1]['VMAF_feature_adm2_score'], 1.0, places=4) self.assertAlmostEqual(results[1]['VMAF_feature_ansnr_score'], 34.306043416666668, places=4) def test_run_vmaf_fextractor_with_cropping_and_padding_to_original_wh(self): # crop_cmd: 288:162:144:81 - crop to the center 288x162 image # pad_cmd: iw+288:ih+162:144:81 - pad back to the original size ref_path = VmafConfig.test_resource_path("yuv", "src01_hrc00_576x324.yuv") dis_path = VmafConfig.test_resource_path("yuv", "src01_hrc01_576x324.yuv") asset = Asset(dataset="test", content_id=0, asset_id=1, workdir_root=VmafConfig.workdir_path(), ref_path=ref_path, dis_path=dis_path, asset_dict={'width':576, 'height':324, 'crop_cmd':'288:162:144:81', 'pad_cmd': 'iw+288:ih+162:144:81', 'quality_width':576, 'quality_height':324, }) asset_original = Asset(dataset="test", content_id=0, asset_id=2, workdir_root=VmafConfig.workdir_path(), ref_path=ref_path, dis_path=ref_path, asset_dict={'width':576, 'height':324, 'crop_cmd':'288:162:144:81', 'pad_cmd': 'iw+288:ih+162:144:81', 'quality_width':576, 'quality_height':324, }) self.fextractor = VmafFeatureExtractor( [asset, asset_original], None, fifo_mode=True) self.fextractor.run(parallelize=True) results = self.fextractor.results self.assertAlmostEqual(results[0]['VMAF_feature_vif_score'], 0.64106379166666672, places=4) self.assertAlmostEqual(results[0]['VMAF_feature_motion_score'], 0.7203213958333331, places=4) self.assertAlmostEqual(results[0]['VMAF_feature_adm2_score'],0.94700196017089999, places=4) self.assertAlmostEqual(results[0]['VMAF_feature_ansnr_score'], 32.78451041666667, places=4) self.assertAlmostEqual(results[1]['VMAF_feature_vif_score'], 1.0, places=4) self.assertAlmostEqual(results[1]['VMAF_feature_motion_score'], 0.7203213958333331, places=4) self.assertAlmostEqual(results[1]['VMAF_feature_adm2_score'], 1.0, places=4) self.assertAlmostEqual(results[1]['VMAF_feature_ansnr_score'], 40.280504208333333, places=4) def test_run_strred_fextractor(self): print 'test on running STRRED feature extractor...' ref_path = VmafConfig.test_resource_path("yuv", "src01_hrc00_576x324.yuv") dis_path = VmafConfig.test_resource_path("yuv", "src01_hrc01_576x324.yuv") asset = Asset(dataset="test", content_id=0, asset_id=0, workdir_root=VmafConfig.workdir_path(), ref_path=ref_path, dis_path=dis_path, asset_dict={'width':576, 'height':324}) asset_original = Asset(dataset="test", content_id=0, asset_id=1, workdir_root=VmafConfig.workdir_path(), ref_path=ref_path, dis_path=ref_path, asset_dict={'width':576, 'height':324}) self.fextractor = StrredFeatureExtractor( [asset, asset_original], None, fifo_mode=True, result_store=None ) self.fextractor.run(parallelize=True) results = self.fextractor.results self.assertAlmostEqual(results[0]['STRRED_feature_srred_score'], 3.0114681041666671, places=4) self.assertAlmostEqual(results[0]['STRRED_feature_trred_score'], 7.3039486249999994, places=4) self.assertAlmostEqual(results[0]['STRRED_feature_strred_score'], 21.995608318659482, places=4) self.assertAlmostEqual(results[1]['STRRED_feature_srred_score'], 0.0, places=4) self.assertAlmostEqual(results[1]['STRRED_feature_trred_score'], 0.0, places=4) self.assertAlmostEqual(results[1]['STRRED_feature_strred_score'], 0.0, places=4) def test_run_strred_fextractor_blackframes(self): print 'test on running STRRED feature extractor on flat frames...' ref_path = VmafConfig.test_resource_path("yuv", "flat_1920_1080_0.yuv") dis_path = VmafConfig.test_resource_path("yuv", "flat_1920_1080_10.yuv") asset = Asset(dataset="test", content_id=0, asset_id=0, workdir_root=VmafConfig.workdir_path(), ref_path=ref_path, dis_path=dis_path, asset_dict={'width':576, 'height':324}) asset_original = Asset(dataset="test", content_id=0, asset_id=1, workdir_root=VmafConfig.workdir_path(), ref_path=ref_path, dis_path=ref_path, asset_dict={'width':576, 'height':324}) from vmaf.core.result_store import FileSystemResultStore result_store = FileSystemResultStore(logger=None) self.fextractor = StrredFeatureExtractor( [asset, asset_original], None, fifo_mode=True, result_store=result_store ) print ' running for the first time with fresh calculation...' self.fextractor.run(parallelize=True) result0, result1 = self.fextractor.results import os self.assertTrue(os.path.exists(result_store._get_result_file_path(result0))) self.assertTrue(os.path.exists(result_store._get_result_file_path(result1))) print ' running for the second time with stored results...' self.fextractor.run(parallelize=True) results = self.fextractor.results # ignore NaN for result in results: result.set_score_aggregate_method(ListStats.nonemean) self.assertAlmostEqual(results[0]['STRRED_feature_srred_score'], 1220.5679849999999, places=4) self.assertAlmostEqual(results[0]['STRRED_feature_trred_score'], 50983.3097155, places=4) self.assertAlmostEqual(results[0]['STRRED_feature_strred_score'], 62228595.6081, places=4) self.assertAlmostEqual(results[1]['STRRED_feature_srred_score'], 0.0, places=4) self.assertAlmostEqual(results[1]['STRRED_feature_trred_score'], 0.0, places=4) self.assertAlmostEqual(results[1]['STRRED_feature_strred_score'], 0.0, places=4)