示例#1
0
def test_bad_numeric_init():
    u = VMAP(init=42)
    assert_raises(ValueError, u.fit, nn_data)
示例#2
0
def test_negative_sample_rate():
    u = VMAP(negative_sample_rate=-1)
    assert_raises(ValueError, u.fit, nn_data)
示例#3
0
def test_bad_init():
    u = VMAP(init="foobar")
    assert_raises(ValueError, u.fit, nn_data)
示例#4
0
def test_negative_learning_rate():
    u = VMAP(learning_rate=-1.5)
    assert_raises(ValueError, u.fit, nn_data)
示例#5
0
def test_negative_repulsion():
    u = VMAP(repulsion_strength=-0.5)
    assert_raises(ValueError, u.fit, nn_data)
示例#6
0
def test_negative_nneighbors():
    u = VMAP(n_neighbors=-1)
    assert_raises(ValueError, u.fit, nn_data)
示例#7
0
def test_bad_metric():
    u = VMAP(metric=45)
    assert_raises(ValueError, u.fit, nn_data)
示例#8
0
def test_non_integer_ncomponents():
    u = VMAP(n_components=1.5)
    assert_raises(ValueError, u.fit, nn_data)
示例#9
0
def test_too_small_nneighbors():
    u = VMAP(n_neighbors=0.5)
    assert_raises(ValueError, u.fit, nn_data)
示例#10
0
def test_negative_ncomponents():
    u = VMAP(n_components=-1)
    assert_raises(ValueError, u.fit, nn_data)
示例#11
0
def test_negative_min_dist():
    u = VMAP(min_dist=-1)
    assert_raises(ValueError, u.fit, nn_data)
示例#12
0
def test_too_large_op():
    u = VMAP(set_op_mix_ratio=1.5)
    assert_raises(ValueError, u.fit, nn_data)
示例#13
0
def test_negative_op():
    u = VMAP(set_op_mix_ratio=-1.0)
    assert_raises(ValueError, u.fit, nn_data)
示例#14
0
def test_blobs_cluster():
    data, labels = datasets.make_blobs(n_samples=500, n_features=10, centers=5)
    embedding = VMAP().fit_transform(data)
    assert_equal(adjusted_rand_score(labels,
                                     KMeans(5).fit_predict(embedding)), 1.0)