def __init__(self, s1, s2, T): self.s1 = s1 self.s2 = s2 self.p1_s = get_psat(s1, T) self.p2_s = get_psat(s2, T) self.q1 = get_volume(self.s1, T) self.q2 = get_volume(self.s2, T)
def main(x1, y1, P, G_e, T, s1, s2): style.use('classic') w = Wohls(s1, s2, T) A = get_parameter(x1, G_e, s1, s2, T) acc = get_accuracy(G_e, w.Ge(x1, A)) x = np.linspace(0, 1, 50) fig4 = plt.figure(facecolor='white') plt.title(r"$G^E-x$") plt.xlim(0, 1) plt.xlabel(r'$x_1$') plt.ylabel(r'$G^E\ (J/mol)$') plt.scatter(x1, G_e) plt.plot(x, w.Ge(x, A), label=r"$Wohls\ model$", color='red') plt.axhline(0, color='black') q1 = get_volume(s1, T) q2 = get_volume(s2, T) z = x * q1 / (x * q1 + (1 - x) * q2) p1_s = get_psat(s1, T) p2_s = get_psat(s2, T) P_Wohls = x * p1_s * w.gamma1(z, A) + (1 - x) * p2_s * w.gamma2(z, A) y_Wohls = x * p1_s * w.gamma1(z, A) / P_Wohls P_raoult = x * p1_s + (1 - x) * p2_s fig5 = plt.figure(facecolor='white') plt.title(r"$P-x$") plt.xlim(0, 1) plt.ylim(0, 1.2 * max(P)) plt.xlabel(r'$x_1$') plt.ylabel(r'$P\ (kPa)$') plt.scatter(x1, P) plt.plot(x, P_Wohls, label=r"$Wohls\ model$", color='red') plt.plot(x, P_raoult, color='black', label=r"$Raoult's\ Law$") plt.legend(loc='best', fontsize=10) fig6 = plt.figure(facecolor='white') plt.gca().set_aspect('equal', adjustable='box') plt.title(r"$y-x$") plt.xlim(0, 1) plt.ylim(0, 1) plt.xlabel(r'$x_1$') plt.ylabel(r'$y_1$') plt.scatter(x1, y1) plt.plot(x, y_Wohls, label=r"$Wohls\ model$", color='red') plt.plot(x, x, color='black') plt.legend(loc='best', fontsize=10) return A, acc, fig4, fig5, fig6
def process(self, x): p = len(x) # the first cluster if len(self.clusters) == 0: self.clusters.append(new_cluster(x, self.frac, self.fac, p, self.m)) else: # elect winning cluster win_cluster = min_dist(x, self.clusters) win_cluster_radius = get_radius(self.fac, p, self.m, win_cluster.k) # point is not contained in the winning cluster if (distance.mahalanobis(x, win_cluster.centroid, win_cluster.inv_cov) > win_cluster_radius): self.clusters.append( new_cluster(x, self.frac, self.fac, p, self.m)) else: self.clusters.remove(win_cluster) # update winning cluster update_winner_cluster(x, win_cluster) if len(self.clusters) != 0: # update nearest neighbor of winning cluster update_nearest_cluster(x, win_cluster, self.clusters) # check overlap (max_olap, max_cluster) = overlap(win_cluster, self.clusters) if (max_olap > 0): cluster_merged = merge(win_cluster, max_cluster) V_m = get_volume(cluster_merged, self.fac, p, self.m) V_w = get_volume(win_cluster, self.fac, p, self.m) V_c = get_volume(max_cluster, self.fac, p, self.m) # Check volume, for the final decision if V_m <= p * (V_w + V_c): self.clusters.remove(max_cluster) self.clusters.append(cluster_merged) else: self.clusters.append(win_cluster) pass
def test(nyu2_loader, model, width, height): for i, image in enumerate(nyu2_loader): image = torch.autograd.Variable(image, volatile=True).cuda() out = model(image) out = out.view(out.size(2),out.size(3)).data.cpu().numpy() max_pix = out.max() min_pix = out.min() out = (out-min_pix)/(max_pix-min_pix)*255 out = cv2.resize(out,(width,height),interpolation=cv2.INTER_CUBIC) cv2.imwrite(os.path.join(args.output, "out_grey.png"),out) out_grey = cv2.imread(os.path.join(args.output, "out_grey.png"),0) out_color = cv2.applyColorMap(out_grey, cv2.COLORMAP_JET) cv2.imwrite(os.path.join(args.output, "out_color.png"),out_color) vol = get_volume(out_grey, args.json) print("Volume:") print(vol) print("unit: cm^3") out_file = open(os.path.join(args.output, "out.txt"), "w") out_file.write("Volume:\n") out_file.write(str(vol)) out_file.write("\n") out_file.write("unit: cm^3") out_file.close() get_mask(out_grey, args.json, args.output)
main file to 1) read fuel composition from Mk1.txt MCNP input 2) generate fuel composition files that can be used in FIG to generate serpent input files ''' import volume import config import pandas as pd from ave_fuel_mat import sum_comp, sum_comp_2_zones import numpy as np # the weight(volume or flux) matrices have dimension 5x4x8 volmat = np.array(volume.get_volume()).reshape((4, 5, 1)) volmat = np.swapaxes(volmat, 0, 1) print(volmat.shape) print('compute average fuel composition for near wall zones') # build a flux matrix for the wall regions by setting the # active region flux to 0 in the full core flux matrix # read volume*flux in each zone fluxdf = pd.read_csv(config.FLUX_CSV_PATH, header=None) fluxmat = fluxdf.values.reshape((5, 4, 8)) print('fluxmat') print(fluxmat)
def get_brain(subject, fname_surf_L=None, fname_surf_R=None, fname_tex_L=None, fname_tex_R=None, bad_areas=None, fname_vol=None, name_lobe_vol='Subcortical', trans=False, fname_atlas=None, fname_color=None): # type: (object, object, object, object, object, object, object, object, object, object, object) -> object """show structures Parameters ---------- subject : str The name of the subject fname_surf_L : None | str The filename of the surface of the left hemisphere fname_surf_R : None | str The filename of the surface of the right hemisphere fname_tex_L : None | str The filename of the texture surface of the right hemisphere The texture is used to select areas in the surface fname_tex_R : None | str The filename of the texture surface of the left hemisphere bad_areas : list of int Areas that will be excluded from selection fname_vol : None | str The filename of mri labelized name_lobe_vol : None | list of str | str Interest lobe names trans : str | None The filename that contains transformation matrix for surface fname_atlas : str | None The filename of the area atlas fname_color : Brain surfer instance The filename of color atlas Returns ------- figure : Figure object ------- Author : Alexandre Fabre """ list_hemi = ['lh', 'rh'] volumes = None surfaces = None fname_surf = [fname_surf_L, fname_surf_R] fname_tex = [fname_tex_L, fname_tex_R] print('build surface areas') for i, hemi in enumerate(list_hemi): if fname_surf[i] is not None and fname_tex[i] is not None: if surfaces is None: surfaces = [] surface = get_surface(fname_surf[i], subject=subject, hemi=hemi, trans=trans) # save to project areas on the hemisphere surface.save_as_ref() areas_hemi = get_surface_areas(surface, texture=fname_tex[i], hemi=hemi, subject=subject, fname_atlas=fname_atlas, fname_color=fname_color) # Delete WM (values of texture 0 and 255) bad_areas = [0, 42] if bad_areas is not None: areas_hemi = np.delete(areas_hemi, bad_areas, axis=0) surfaces.append(areas_hemi) print('[done]') print('build volume areas') if fname_vol is not None: volumes = [] for hemi in list_hemi: cour_volume = get_volume(fname_vol, fname_atlas, name_lobe_vol, subject, hemi, True) volumes.append(cour_volume) print('[done]') brain = Brain(surfaces, volumes) return brain
def __init__(self, s1, s2, T): self.q1 = get_volume(s1, T) self.q2 = get_volume(s2, T) self.T = T
main file to 1) read fuel composition from Mk1.txt MCNP input 2) generate fuel composition files that can be used in FIG to generate serpent input files ''' import volume import config import pandas as pd from ave_fuel_mat import sum_comp, sum_comp_2_zones import numpy as np # the weight(volume or flux) matrices have dimension 5x4x8 volmat = np.array(volume.get_volume()).reshape((4, 5, 1)) volmat = np.swapaxes(volmat, 0, 1) print(volmat.shape) print('compute average fuel composition for near wall zones') # build a flux matrix for the wall regions by setting the # active region flux to 0 in the full core flux matrix # read volume*flux in each zone fluxdf = pd.read_csv(config.FLUX_CSV_PATH, header=None) fluxmat = fluxdf.values.reshape((5, 4, 8)) print('fluxmat') print(fluxmat) fluxmat_wall = fluxmat for passno in range(1, 9):
def main(): st.title("Correlations") st.write( """ The *Margules* model, *Redlich-Kister Expansion* truncated to two terms, *van Laar* model and the *Truncated Wohls expansion* are implemented here. """ r"In case $\alpha$ fits the data with an accuracy of 80% or above, the $\alpha_{GM}$ value is displayed." ) compounds = [ 'Acetonitrile', 'Acetone', '1,2-Ethanediol', 'Ethanol', 'Diethyl ether', 'Ethyl acetate', 'Benzene', '1-Butanol', 'Chloroform', 'Cyclohexane', 'Acetic acid butyl ester', 'Acetic acid', 'Hexane', '2-Propanol', '1-Hexene', 'Methanol', 'Tetrahydrofuran', 'Water', 'm-Xylene', 'p-Xylene', 'N-Methyl-2-pyrrolidone', '1,3-Butadiene', 'Hexadecane' ] menu_options = compounds.copy() for i, compound in enumerate(compounds): if ' ' in compound: compounds[i] = compound.replace(' ', '%20') compound1 = st.selectbox('Select compound 1', menu_options, key='compound1') compound2 = st.selectbox('Select compound 2', menu_options, key='compound2') i1 = menu_options.index(compound1) i2 = menu_options.index(compound2) st.info("You have chosen %s and %s" % (compound1, compound2)) @st.cache(suppress_st_warning=True) def link_generator(i1, i2): url = 'http://www.ddbst.com/en/EED/VLE/VLE%20' + compounds[ i1] + '%3B' + compounds[i2] + '.php' if requests.get(url).status_code == 404: url = 'http://www.ddbst.com/en/EED/VLE/VLE%20' + compounds[ i2] + '%3B' + compounds[i1] + '.php' return url try: if compound1 == compound2: st.warning('Choose different compounds') else: url = link_generator(i1, i2) if requests.get(url).status_code == 404: st.error( "VLE data for this pair of compounds doesn't exist at DDBST.") dataframes = pd.read_html(url) isothermal_vledata = [] T = [] for i, data in enumerate(dataframes): col = data.columns if col.dtype == object: if len(col) == 3 and 'P' in col[0] and 'x1' in col[ 1] and 'y1' in col[2]: T.append(float(dataframes[i - 1][1])) isothermal_vledata.append(dataframes[i]) if isothermal_vledata == []: st.error( 'There is no isothermal data available for this pair of compounds at DDBST' ) else: for i in range(len(T)): st.write('%d)' % (i + 1), 'T = ', T[i], 'K') st.write(isothermal_vledata[i]) if len(T) == 1: choice = 1 else: choice = st.number_input('Choose a dataset', value=1, min_value=1, max_value=len(T)) st.info('Analysing dataset %d ...' % choice) P = isothermal_vledata[choice - 1]['P [kPa]'] x1 = isothermal_vledata[choice - 1]['x1 [mol/mol]'] y1 = isothermal_vledata[choice - 1]['y1 [mol/mol]'] T = T[choice - 1] st.write(r'$T = %0.2f K$' % T) p1sat = get_psat(compounds[i1], T) p2sat = get_psat(compounds[i2], T) if p1sat > p2sat: st.info('The more volatile component is %s' % menu_options[i1]) s1, s2 = compounds[i1], compounds[i2] else: st.info('The more volatile component is %s' % menu_options[i2]) s1, s2 = compounds[i2], compounds[i1] p1_s = max(p1sat, p2sat) p2_s = min(p1sat, p2sat) st.write(r'$p_1^s = %0.3f kPa$' % p1_s) st.write(r'$p_2^s = %0.3f kPa$' % p2_s) x = np.linspace(0, 1, 50) P_raoult = x * p1_s + (1 - x) * p2_s y_raoult = x * p1_s / P_raoult n_points = len(x1) - 1 try: if x1[0] == 0 and x1[n_points] != 1: x1, y1, P = x1[1:], y1[1:], P[1:] if x1[0] != 0 and x1[n_points] == 1: x1, y1, P = x1[:n_points], y1[:n_points], P[:n_points] if x1[0] == 0 and x1[n_points] == 1: x1, y1, P = x1[1:n_points], y1[1:n_points], P[1:n_points] except KeyError: pass q1, q2 = get_volume(s1, T), get_volume(s2, T) z1 = x1 * q1 / (x1 * q1 + (1 - x1) * q2) gamma1 = np.divide(P * y1, x1 * p1_s) gamma2 = np.divide(P * (1 - y1), ((1 - x1) * p2_s)) G_e = constants.R * T * (xlogy(x1, gamma1) + xlogy(1 - x1, gamma2)) alpha_gm = models.alphagm.get_alpha_gm(x1, y1) if alpha_gm == 0: pass else: st.success(r"$\alpha_{GM}=%0.3f$" % alpha_gm) st.text("Try using this value in the McCabe-Thiele Plotter!") model = st.selectbox("Choose a model", [ "Select", "Margules", "Redlich Kister", "van Laar", "Truncated Wohls" ], key='model') if model == "Select": st.info("Select a model") else: if model != "Truncated Wohls": MODELS = { "Margules": models.margules, "Redlich Kister": models.redlichkister, "van Laar": models.vanlaar } latest_iteration = st.empty() bar = st.progress(0) for i in range(100): latest_iteration.text(f'{i + 1}%') bar.progress(i + 1) time.sleep(0.03) A, acc, fig4, fig5, fig6 = MODELS[model].main( x1, y1, P, G_e, x, p1_s, p2_s, T, P_raoult) if model == "Margules": st.write(r"$G^E = %0.3fx_1x_2$" % A) if model == "Redlich Kister": st.write(r"$G^E = x_1x_2(%0.3f + (%0.3f)(x_1-x_2))$" % (A[0], A[1])) if model == "van Laar": st.write( r"$\frac{x_1x_2}{G^E} = \frac{x_1}{%0.3f} + \frac{x_2}{%0.3f}$" % (A[1], A[0])) st.write(r"$R^2$ score = %0.3f" % acc) st.write(fig4, fig5, fig6) else: latest_iteration = st.empty() bar = st.progress(0) for i in range(100): latest_iteration.text(f'{i + 1}%') bar.progress(i + 1) time.sleep(0.03) A, acc, fig4, fig5, fig6 = models.wohls.main( x1, y1, P, G_e, T, s1, s2) st.write(r"Molar volumes: $q_1=%0.3e$, $q_2=%0.3e$" % (q1, q2)) st.write( r"$\frac{G^E/RT}{x_1q_1 + x_2q_2} = 2(%0.3f)z_1z_2$" % A) st.write(r"$R^2$ score = %0.3f" % acc) st.write(fig4, fig5, fig6) except: pass st.sidebar.title("Note") st.sidebar.info(""" The saturation pressures are obtained from [DDBST's database](http://ddbonline.ddbst.com/AntoineCalculation/AntoineCalculationCGI.exe?component=Ethanol).""" ) st.sidebar.info(""" The densities are obtained from [DDBST's database](http://ddbonline.ddbst.de/DIPPR105DensityCalculation/DIPPR105CalculationCGI.exe?component=Diethyl%20ether).""" ) st.sidebar.info( "These models can only be used for binary isothermal vapor-liquid equilibrium data." )