示例#1
0
def get_estimates_map(request):
    """
    Generates a Map page containing the routes and traffic flow.
    :param request: The web request that specifies search criteria.
    :return: The web page.
    """
    data = {'tab_selected': 'map'}
    results = get_estimates_common(request, data)
    data['map_year'] = globals.get_map_year(data['query']["year__gte"],
                                            data['query']["year__lte"])
    # Group estimates by embarkation and disembarkation geocodes.
    regions = {}
    flows = {}
    cache = EstimateManager.cache()
    for pk in get_pks_from_haystack_results(results):
        result = cache[int(pk)]
        dregion = result.disembarkation_region.name
        eregion = result.embarkation_region.name
        regions[dregion] = (result.disembarkation_region.latitude,
                            result.disembarkation_region.longitude,
                            result.disembarkation_region.import_area)
        regions[eregion] = (result.embarkation_region.latitude,
                            result.embarkation_region.longitude,
                            result.embarkation_region.export_area)
        key = eregion + "_" + dregion
        item = (eregion, dregion, 0, 0)
        if key in flows:
            item = flows[key]
        flows[key] = (eregion, dregion, item[2] + result.embarked_slaves,
                      item[3] + result.disembarked_slaves)
    data['regions'] = regions
    data['flows'] = flows
    return render(request, 'assessment/estimates.html', data)
示例#2
0
def get_estimates_map(request):
    """
    Generates a Map page containing the routes and traffic flow.
    :param request: The web request that specifies search criteria.
    :return: The web page.
    """
    data = {'tab_selected': 'map'}
    results = get_estimates_common(request, data)
    data['map_year'] = globals.get_map_year(data['query']["year__gte"], data['query']["year__lte"])
    # Group estimates by embarkation and disembarkation geocodes.
    regions = {}
    flows = {}
    cache = EstimateManager.cache()
    for pk in get_pks_from_haystack_results(results):
        result = cache[int(pk)]
        dregion = result.disembarkation_region.name
        eregion = result.embarkation_region.name
        regions[dregion] = (result.disembarkation_region.latitude, result.disembarkation_region.longitude, result.disembarkation_region.import_area)
        regions[eregion] = (result.embarkation_region.latitude, result.embarkation_region.longitude, result.embarkation_region.export_area)
        key = eregion + "_" + dregion
        item = (eregion, dregion,  0, 0)
        if key in flows:
            item = flows[key]
        flows[key] = (eregion, dregion, item[2] + result.embarked_slaves, item[3] + result.disembarked_slaves)
    data['regions'] = regions
    data['flows'] = flows
    return render(request, 'assessment/estimates.html', data)
示例#3
0
def get_results_map_flow(request, results):
    map_ports = {}
    map_flows = {}

    def add_port(geo):
        result = geo is not None and len(geo) == 3 and geo[0].show and geo[1].show and geo[2].show and \
            geo[0].lat and geo[0].lng and geo[1].lat and geo[1].lng and geo[2].lat and geo[2].lng
        if result and not geo[0].pk in map_ports:
            map_ports[geo[0].pk] = geo
        return result

    def add_flow(source, destination, embarked, disembarked):
        result = embarked is not None and disembarked is not None and add_port(
            source) and add_port(destination)
        if result:
            flow_key = long(source[0].pk) * 2147483647 + long(
                destination[0].pk)
            current = map_flows.get(flow_key)
            if current is not None:
                embarked += current[2]
                disembarked += current[3]
            map_flows[flow_key] = (source[0].name, destination[0].name,
                                   embarked, disembarked)
        return result

    # Ensure cache is loaded.
    VoyageCache.load()
    all_voyages = VoyageCache.voyages
    missed_embarked = 0
    missed_disembarked = 0
    # Set up an unspecified source that will be used if the appropriate setting is enabled
    geo_unspecified = CachedGeo(-1, -1, _('Africa, port unspecified'), 0.05,
                                9.34, True, None)
    source_unspecified = (geo_unspecified, geo_unspecified, geo_unspecified)
    keys = get_pks_from_haystack_results(results)
    for pk in keys:
        voyage = all_voyages.get(pk)
        if voyage is None:
            continue
        source = CachedGeo.get_hierarchy(voyage.emb_pk)
        if source is None and settings.MAP_MISSING_SOURCE_ENABLED:
            source = source_unspecified
        destination = CachedGeo.get_hierarchy(voyage.dis_pk)
        add_flow(source, destination, voyage.embarked, voyage.disembarked)
    if missed_embarked > 0 or missed_disembarked > 0:
        import logging
        logging.getLogger('voyages').info('Missing flow: (' +
                                          str(missed_embarked) + ', ' +
                                          str(missed_disembarked) + ')')
    return render(request,
                  "search_maps.datatemplate", {
                      'map_ports': map_ports,
                      'map_flows': map_flows
                  },
                  content_type='text/javascript')
示例#4
0
def get_results_map_animation(results, allow_no_numbers=False):
    VoyageCache.load()
    all_voyages = VoyageCache.voyages

    keys = get_pks_from_haystack_results(results)
    items = []
    for pk in keys:
        voyage = all_voyages.get(pk)
        if voyage is None:
            print "Missing voyage with PK" + str(pk)
            continue

        def can_show(port_pk):
            ph = CachedGeo.get_hierarchy(port_pk)
            return ph is not None and (ph[0].show or ph[1].show)

        if can_show(voyage.emb_pk) and can_show(voyage.dis_pk) and \
                voyage.year is not None and \
                (allow_no_numbers or \
                    (voyage.embarked is not None and voyage.embarked > 0 and voyage.disembarked is not None)):
            flag = VoyageCache.nations.get(voyage.ship_nat_pk)
            if flag is None:
                flag = ''
            hsrc = CachedGeo.get_hierarchy(voyage.emb_pk)
            hdst = CachedGeo.get_hierarchy(voyage.dis_pk)
            items.append({
                "voyage_id":
                voyage.voyage_id,
                "src":
                voyage.emb_pk,
                "dst":
                voyage.dis_pk,
                "regsrc":
                hsrc[1].pk,
                "bregsrc":
                hsrc[2].pk,
                "bregdst":
                hdst[2].pk,
                "embarked":
                voyage.embarked or 0,
                "disembarked":
                voyage.disembarked or 0,
                "year":
                voyage.year,
                "month":
                voyage.month,
                "ship_ton":
                voyage.ship_ton if voyage.ship_ton is not None else 0,
                "nat_id":
                voyage.ship_nat_pk if voyage.ship_nat_pk is not None else 0,
                "ship_name":
                unicode(voyage.ship_name)
                if voyage.ship_name is not None else '',
            })
    return JsonResponse(items, safe=False)
示例#5
0
def get_estimates_timeline(request):
    """
    Generates a Time-line page with total traffic volume per year.
    :param request: The web request that specifies search criteria.
    :return: The web page or an XLS spreadsheet with timeline data.
    """
    data = {'tab_selected': 'timeline'}
    results = get_estimates_common(request, data)
    data['show_events'] = data['all_nations_selected'] and data['all_embarkations_selected'] and\
                          data['all_disembarkations_selected']
    # Group estimates by year and sum embarked and disembarked for year.
    # The following dict has keys corresponding to years and entries
    # formed by tuples (embarked_count, disembarked_count)
    timeline = {}
    cache = EstimateManager.cache()
    for pk in get_pks_from_haystack_results(results):
        result = cache[pk]
        item = (0, 0)
        if result.year in timeline:
            item = timeline[result.year]
        timeline[result.year] = (item[0] + result.embarked_slaves,
                                 item[1] + result.disembarked_slaves)

    query = data['query']
    data['min_year'] = query['year__gte'] if query['year__gte'] > globals.default_first_year\
        else globals.default_first_year
    data['max_year'] = query['year__lte'] if query['year__lte'] < globals.default_last_year\
        else globals.default_last_year
    data['timeline'] = timeline
    data['min_year'] -= 1
    data['max_year'] += 1

    post = data['post']
    if post is None or "download" not in post:
        return render(request, 'assessment/estimates.html', data)
    else:
        rows = [[k, int(round(t[0])), int(round(t[1]))]
                for k, t in timeline.iteritems()]
        rows = sorted(rows, key=lambda a: a[0])
        return download_xls([[('Year', 1), ('Embarked Slaves', 1),
                              ('Disembarked Slaves', 1)]], rows)
示例#6
0
def get_estimates_timeline(request):
    """
    Generates a Time-line page with total traffic volume per year.
    :param request: The web request that specifies search criteria.
    :return: The web page or an XLS spreadsheet with timeline data.
    """
    data = {'tab_selected': 'timeline'}
    results = get_estimates_common(request, data)
    data['show_events'] = data['all_nations_selected'] and data['all_embarkations_selected'] and\
                          data['all_disembarkations_selected']
    # Group estimates by year and sum embarked and disembarked for year.
    # The following dict has keys corresponding to years and entries
    # formed by tuples (embarked_count, disembarked_count)
    timeline = {}
    cache = EstimateManager.cache()
    for pk in get_pks_from_haystack_results(results):
        result = cache[pk]
        item = (0, 0)
        if result.year in timeline:
            item = timeline[result.year]
        timeline[result.year] = (item[0] + result.embarked_slaves, item[1] + result.disembarked_slaves)

    query = data['query']
    data['min_year'] = query['year__gte'] if query['year__gte'] > globals.default_first_year\
        else globals.default_first_year
    data['max_year'] = query['year__lte'] if query['year__lte'] < globals.default_last_year\
        else globals.default_last_year
    data['timeline'] = timeline
    data['min_year'] -= 1
    data['max_year'] += 1

    post = data['post']
    if post is None or "download" not in post:
        return render(request, 'assessment/estimates.html', data)
    else:
        rows = [[k, int(round(t[0])), int(round(t[1]))] for k, t in timeline.iteritems()]
        rows = sorted(rows, key=lambda a: a[0])
        return download_xls([[('Year', 1), ('Embarked Slaves', 1), ('Disembarked Slaves', 1)]], rows)
示例#7
0
def get_estimates_table(request):
    """
    Generate tabular data summarizing the estimates.
    :param request: The web request containing search data and tabular layout
    :return: The rendered page or an XLS spreadsheet containing table data.
    """
    data = {'tab_selected': 'table'}
    results = get_estimates_common(request, data)

    def year_mod(year, mod):
        """
        Helper function that groups years according to a given modulus.
        For instance, year_mod(1501, 5) = year_mod(1502, 5) = ... = year_mod(1505, 5).
        :param year: The year.
        :param mod: The length of each year interval.
        :return: A pair (mod, index of year interval).
        """
        year -= 1
        return mod, (year - (year % mod)) / mod

    # key_functions dictionary specifies grouping functions.
    key_functions = {
        '0': lambda e: e.nation,
        '1': lambda e: e.embarkation_region,
        '2': lambda e: e.disembarkation_region.import_area,
        '3': lambda e: e.disembarkation_region,
        '4': lambda e: e.year,
        '5': lambda e: year_mod(e.year, 5),
        '6': lambda e: year_mod(e.year, 10),
        '7': lambda e: year_mod(e.year, 25),
        '8': lambda e: year_mod(e.year, 50),
        '9': lambda e: year_mod(e.year, 100),
    }

    # Select key functions based on post data or use default values if this is the initial GET request.
    row_key_index = '7'
    col_key_index = '0'
    cell_key_index = '1'
    include_empty = False;
    estimate_selection_form = None
    post = data['post']

    # Fetch EstimateSelectionForm either from Post (if any), from Session (if any) or a default form.
    if post is not None:
        estimate_selection_form = EstimateSelectionForm(post)
    if (estimate_selection_form is None or not estimate_selection_form.is_valid()) \
            and "estimate_selection_form" in request.session:
        estimate_selection_form = request.session["estimate_selection_form"]
    if post is not None and post.get("table_options") == "Reset to default":
        estimate_selection_form = None
    if estimate_selection_form is not None and estimate_selection_form.is_valid():
        cell_key_index = estimate_selection_form.cleaned_data["cells"]
        col_key_index = estimate_selection_form.cleaned_data["columns"]
        row_key_index = estimate_selection_form.cleaned_data["rows"]
        include_empty = estimate_selection_form.cleaned_data["include_empty"]
    else:
        estimate_selection_form = EstimateSelectionForm(initial={
            'rows': row_key_index,
            'columns': col_key_index,
            'cells': cell_key_index})
    row_key_function = key_functions[row_key_index]
    col_key_function = key_functions[col_key_index]
    data['table_form'] = estimate_selection_form
    # Save form to session so that if the user navigates elsewhere and then returns, the form is unchanged.
    request.session["estimate_selection_form"] = estimate_selection_form

    # Aggregate results according to the row and column keys.
    # Each result is a pair (tuple) containing total embarked and total disembarked.
    table_dict = {}
    cache = EstimateManager.cache()
    if include_empty:
        # Force loading entire rows or columns which have zero value.
        # This is done by projecting the entire set of data on each key function
        # and forming the Cartesian product of the two.
        query = data['query']
        year_filter = lambda e: query['year__gte'] <= e.year <= query['year__lte']
        filter_functions = {
            '0': lambda e: e.nation.name in query['nation__in'],
            '1': lambda e: e.embarkation_region.name in query['embarkation_region__in'],
            '2': lambda e: e.disembarkation_region.name in query['disembarkation_region__in'],
            '3': lambda e: e.disembarkation_region.name in query['disembarkation_region__in'],
            '4': year_filter,
            '5': year_filter,
            '6': year_filter,
            '7': year_filter,
            '8': year_filter,
            '9': year_filter,
        }
        row_filter = filter_functions[row_key_index]
        col_filter = filter_functions[col_key_index]
        estimates = cache.values()
        all_row_keys = set([row_key_function(e) for e in estimates if row_filter(e)])
        all_col_keys = set([col_key_function(e) for e in estimates if col_filter(e)])
        table_dict = {(rk, ck): (0, 0) for rk in all_row_keys for ck in all_col_keys}

    for pk in get_pks_from_haystack_results(results):
        result = cache.get(pk)
        if result is not None:
            key = (row_key_function(result), col_key_function(result))
            cell = (0, 0)
            if key in table_dict:
                cell = table_dict[key]
            cell = (cell[0] + result.embarked_slaves, cell[1] + result.disembarked_slaves)
            table_dict[key] = cell

    def header_with_name(x):
        return x.name

    def header_year_range(x):
        return str(x[0] * x[1] + 1) + '-' + str(x[0] * (1 + x[1]))

    # header_functions specifies how the row/column headers are generated.
    header_functions = {
        '0': header_with_name,
        '1': header_with_name,
        '2': header_with_name,
        '3': header_with_name,
        '4': lambda x: x,
        '5': header_year_range,
        '6': header_year_range,
        '7': header_year_range,
        '8': header_year_range,
        '9': header_year_range
    }

    row_header_function = header_functions[row_key_index]
    col_header_function = header_functions[col_key_index]

    # Order columns and rows by their respective headers.
    default_sort_fun = lambda x: x.order_num
    row_sort_fun = default_sort_fun if int(row_key_index) < 4 else row_header_function
    row_set = sorted(set([k[0] for k in table_dict.keys()]), key=row_sort_fun)
    column_set = sorted(set([k[1] for k in table_dict.keys()]), key=default_sort_fun)

    # How many cells a single piece of data spans
    # (1 for either embarked or disembarked only and 2 for both).
    cell_span = 2 if cell_key_index == '0' else 1

    def specific_region_grouping(original_set, header_list, span_multiplier=1):
        """
        Helper function that allows grouping column or row headers when the headers
        are composed of Area and Region.
        :param original_set - the original set of columns or rows.
        :param header_list - the list of (row or column) headers that will be appended by area headers.
        :param span_multiplier - a multiplicity factor for the columnspan or rowspan of each cell.
        :return: original_set sorted according to area.
        """
        key_map = lambda region: region.import_area.name
        modified_set = sorted(original_set, key=lambda region: region.import_area.order_num)
        from itertools import groupby
        header_list.append([(k, span_multiplier * sum(1 for x in g)) for k, g in groupby(modified_set, key_map)])
        return modified_set

    # Header rows are encoded as an array of pairs (tuples), where each
    # pair consists of the header's label and column span.
    header_rows = []
    if col_key_index == '3':
        column_set = specific_region_grouping(column_set, header_rows, cell_span)
        header_rows[0].append(('', cell_span))
    header_rows.append([(col_header_function(x), cell_span) for x in column_set])
    header_rows[-1].append(('Totals', cell_span))

    # Generate row headers (left-most columns).
    row_headers = []
    if row_key_index == '3':
        row_set = specific_region_grouping(row_set, row_headers)
        row_headers[0].append(('', 1))
    row_headers.append([(row_header_function(r), 1) for r in row_set] + [('Totals', 1)])

    cell_display_list = []
    if cell_key_index == '0':
        # Use list comprehensions to repeat the pair of cells
        # Embarked, Disembarked for each column in column_set.
        helper = ['Embarked', 'Disembarked']
        header_rows.append([(s, 1) for i in range(1 + len(column_set)) for s in helper])
        cell_display_list = [0, 1]
    elif cell_key_index == '1':
        cell_display_list = [0]
    elif cell_key_index == '2':
        cell_display_list = [1]

    data['header_rows'] = header_rows
    data['header_rows_len'] = len(header_rows)
    data['totals_header_rows_len'] = len(header_rows) - (1 if cell_key_index == '0' else 0)
    data['totals_header_cols_span'] = len(cell_display_list)

    # Generate tabular data from table_dict filling any missing entries with (0, 0).
    # At this point each entry of the table is a pair (embarked_count, disembarked_count).
    full_data_set = [[table_dict[(r, c)] if (r, c) in table_dict else (0, 0) for c in column_set]
                     for r in row_set]
    # Round numbers to integers.
    full_data_set = [[tuple(int(round(pair[i])) for i in range(2)) for pair in r] for r in full_data_set]
    # Append row totals (last column).
    full_data_set = [r + [tuple(sum([x[i] for x in r]) for i in range(2))] for r in full_data_set]
    # Append column totals (last row).
    full_data_set.append([tuple(sum([full_data_set[i][j][k] for i in range(len(row_set))]) for k in range(2))
                         for j in range(1 + len(column_set))])
    # Transform pairs(embarked_count, disembarked_count) by projecting their values
    # into single integers using the cell_display_list to determine which numbers
    # (embarked, disembarked, or both) should appear in the final table.
    full_data_set = [[pair[i] for pair in r for i in cell_display_list]
                     for r in full_data_set]

    data['rows'] = full_data_set

    if post is None or "download" not in post:
        # Alter row_headers so that it is simpler to use in the template.
        tmp = [[None for x in row_headers] for r in full_data_set]
        col_number = 0
        for row_header_col in row_headers:
            row_number = 0
            for cell in row_header_col:
                tmp[row_number][col_number] = cell
                row_number += cell[1]
            col_number += 1
        data['row_headers'] = tmp
        data['row_headers_count'] = len(row_headers)
        return render(request, 'assessment/estimates.html', data)
    else:
        return download_xls(header_rows, full_data_set, row_headers)
示例#8
0
def get_estimates_table(request):
    """
    Generate tabular data summarizing the estimates.
    :param request: The web request containing search data and tabular layout
    :return: The rendered page or an XLS spreadsheet containing table data.
    """
    data = {'tab_selected': 'table'}
    results = get_estimates_common(request, data)

    def year_mod(year, mod):
        """
        Helper function that groups years according to a given modulus.
        For instance, year_mod(1501, 5) = year_mod(1502, 5) = ... = year_mod(1505, 5).
        :param year: The year.
        :param mod: The length of each year interval.
        :return: A pair (mod, index of year interval).
        """
        year -= 1
        return mod, (year - (year % mod)) / mod

    # key_functions dictionary specifies grouping functions.
    key_functions = {
        '0': lambda e: e.nation,
        '1': lambda e: e.embarkation_region,
        '2': lambda e: e.disembarkation_region.import_area,
        '3': lambda e: e.disembarkation_region,
        '4': lambda e: e.year,
        '5': lambda e: year_mod(e.year, 5),
        '6': lambda e: year_mod(e.year, 10),
        '7': lambda e: year_mod(e.year, 25),
        '8': lambda e: year_mod(e.year, 50),
        '9': lambda e: year_mod(e.year, 100),
    }

    # Select key functions based on post data or use default values if this is the initial GET request.
    row_key_index = '7'
    col_key_index = '0'
    cell_key_index = '1'
    include_empty = False
    estimate_selection_form = None
    post = data['post']

    # Fetch EstimateSelectionForm either from Post (if any), from Session (if any) or a default form.
    if post is not None:
        estimate_selection_form = EstimateSelectionForm(post)
    if (estimate_selection_form is None or not estimate_selection_form.is_valid()) \
            and "estimate_selection_form" in request.session:
        estimate_selection_form = request.session["estimate_selection_form"]
    if post is not None and post.get("table_options") == "Reset to default":
        estimate_selection_form = None
    if estimate_selection_form is not None and estimate_selection_form.is_valid(
    ):
        cell_key_index = estimate_selection_form.cleaned_data["cells"]
        col_key_index = estimate_selection_form.cleaned_data["columns"]
        row_key_index = estimate_selection_form.cleaned_data["rows"]
        include_empty = estimate_selection_form.cleaned_data["include_empty"]
    else:
        estimate_selection_form = EstimateSelectionForm(
            initial={
                'rows': row_key_index,
                'columns': col_key_index,
                'cells': cell_key_index
            })
    row_key_function = key_functions[row_key_index]
    col_key_function = key_functions[col_key_index]
    data['table_form'] = estimate_selection_form
    # Save form to session so that if the user navigates elsewhere and then returns, the form is unchanged.
    request.session["estimate_selection_form"] = estimate_selection_form

    # Aggregate results according to the row and column keys.
    # Each result is a pair (tuple) containing total embarked and total disembarked.
    table_dict = {}
    cache = EstimateManager.cache()
    if include_empty:
        # Force loading entire rows or columns which have zero value.
        # This is done by projecting the entire set of data on each key function
        # and forming the Cartesian product of the two.
        query = data['query']
        year_filter = lambda e: query['year__gte'] <= e.year <= query[
            'year__lte']
        filter_functions = {
            '0':
            lambda e: e.nation.name in query['nation__in'],
            '1':
            lambda e: e.embarkation_region.name in query[
                'embarkation_region__in'],
            '2':
            lambda e: e.disembarkation_region.name in query[
                'disembarkation_region__in'],
            '3':
            lambda e: e.disembarkation_region.name in query[
                'disembarkation_region__in'],
            '4':
            year_filter,
            '5':
            year_filter,
            '6':
            year_filter,
            '7':
            year_filter,
            '8':
            year_filter,
            '9':
            year_filter,
        }
        row_filter = filter_functions[row_key_index]
        col_filter = filter_functions[col_key_index]
        estimates = cache.values()
        all_row_keys = set(
            [row_key_function(e) for e in estimates if row_filter(e)])
        all_col_keys = set(
            [col_key_function(e) for e in estimates if col_filter(e)])
        table_dict = {(rk, ck): (0, 0)
                      for rk in all_row_keys for ck in all_col_keys}

    for pk in get_pks_from_haystack_results(results):
        result = cache.get(pk)
        if result is not None:
            key = (row_key_function(result), col_key_function(result))
            cell = (0, 0)
            if key in table_dict:
                cell = table_dict[key]
            cell = (cell[0] + result.embarked_slaves,
                    cell[1] + result.disembarked_slaves)
            table_dict[key] = cell

    def header_with_name(x):
        return x.name

    def header_year_range(x):
        return str(x[0] * x[1] + 1) + '-' + str(x[0] * (1 + x[1]))

    # header_functions specifies how the row/column headers are generated.
    header_functions = {
        '0': header_with_name,
        '1': header_with_name,
        '2': header_with_name,
        '3': header_with_name,
        '4': lambda x: x,
        '5': header_year_range,
        '6': header_year_range,
        '7': header_year_range,
        '8': header_year_range,
        '9': header_year_range
    }

    row_header_function = header_functions[row_key_index]
    col_header_function = header_functions[col_key_index]

    # Order columns and rows by their respective headers.
    default_sort_fun = lambda x: x.order_num
    row_sort_fun = default_sort_fun if int(
        row_key_index) < 4 else row_header_function
    row_set = sorted(set([k[0] for k in table_dict.keys()]), key=row_sort_fun)
    column_set = sorted(set([k[1] for k in table_dict.keys()]),
                        key=default_sort_fun)

    # How many cells a single piece of data spans
    # (1 for either embarked or disembarked only and 2 for both).
    cell_span = 2 if cell_key_index == '0' else 1

    def specific_region_grouping(original_set, header_list, span_multiplier=1):
        """
        Helper function that allows grouping column or row headers when the headers
        are composed of Area and Region.
        :param original_set - the original set of columns or rows.
        :param header_list - the list of (row or column) headers that will be appended by area headers.
        :param span_multiplier - a multiplicity factor for the columnspan or rowspan of each cell.
        :return: original_set sorted according to area.
        """
        key_map = lambda region: region.import_area.name
        modified_set = sorted(original_set,
                              key=lambda region: region.import_area.order_num)
        from itertools import groupby
        header_list.append([(k, span_multiplier * sum(1 for x in g))
                            for k, g in groupby(modified_set, key_map)])
        return modified_set

    # Header rows are encoded as an array of pairs (tuples), where each
    # pair consists of the header's label and column span.
    header_rows = []
    if col_key_index == '3':
        column_set = specific_region_grouping(column_set, header_rows,
                                              cell_span)
        header_rows[0].append(('', cell_span))
    header_rows.append([(col_header_function(x), cell_span)
                        for x in column_set])
    header_rows[-1].append(('Totals', cell_span))

    # Generate row headers (left-most columns).
    row_headers = []
    if row_key_index == '3':
        row_set = specific_region_grouping(row_set, row_headers)
        row_headers[0].append(('', 1))
    row_headers.append([(row_header_function(r), 1)
                        for r in row_set] + [('Totals', 1)])

    cell_display_list = []
    if cell_key_index == '0':
        # Use list comprehensions to repeat the pair of cells
        # Embarked, Disembarked for each column in column_set.
        helper = ['Embarked', 'Disembarked']
        header_rows.append([(s, 1) for i in range(1 + len(column_set))
                            for s in helper])
        cell_display_list = [0, 1]
    elif cell_key_index == '1':
        cell_display_list = [0]
    elif cell_key_index == '2':
        cell_display_list = [1]

    data['header_rows'] = header_rows
    data['header_rows_len'] = len(header_rows)
    data['totals_header_rows_len'] = len(header_rows) - (1 if cell_key_index
                                                         == '0' else 0)
    data['totals_header_cols_span'] = len(cell_display_list)

    # Generate tabular data from table_dict filling any missing entries with (0, 0).
    # At this point each entry of the table is a pair (embarked_count, disembarked_count).
    full_data_set = [[
        table_dict[(r, c)] if (r, c) in table_dict else (0, 0)
        for c in column_set
    ] for r in row_set]
    # Round numbers to integers.
    full_data_set = [[
        tuple(int(round(pair[i])) for i in range(2)) for pair in r
    ] for r in full_data_set]
    # Append row totals (last column).
    full_data_set = [
        r + [tuple(sum([x[i] for x in r]) for i in range(2))]
        for r in full_data_set
    ]
    # Append column totals (last row).
    full_data_set.append([
        tuple(
            sum([full_data_set[i][j][k] for i in range(len(row_set))])
            for k in range(2)) for j in range(1 + len(column_set))
    ])
    # Transform pairs(embarked_count, disembarked_count) by projecting their values
    # into single integers using the cell_display_list to determine which numbers
    # (embarked, disembarked, or both) should appear in the final table.
    full_data_set = [[pair[i] for pair in r for i in cell_display_list]
                     for r in full_data_set]

    data['rows'] = full_data_set

    if post is None or "download" not in post:
        # Alter row_headers so that it is simpler to use in the template.
        tmp = [[None for x in row_headers] for r in full_data_set]
        col_number = 0
        for row_header_col in row_headers:
            row_number = 0
            for cell in row_header_col:
                tmp[row_number][col_number] = cell
                row_number += cell[1]
            col_number += 1
        data['row_headers'] = tmp
        data['row_headers_count'] = len(row_headers)
        return render(request, 'assessment/estimates.html', data)
    else:
        return download_xls(header_rows, full_data_set, row_headers)