示例#1
0
    def get_angles(self):
        """
        Finds optimal angles with the quantum variational eigensolver method.
        
        It's direct copy of the function `get_angles` from Grove. I decided to copy it here
        to access to the optimization trajectory (`angles_history`).
        Returns:
            best_betas, best_gammas (np.arrays): best values of the betas and gammas found. 

        """
        stacked_params = np.hstack(
            (self.qaoa_inst.betas, self.qaoa_inst.gammas))
        vqe = VQE(self.qaoa_inst.minimizer,
                  minimizer_args=self.qaoa_inst.minimizer_args,
                  minimizer_kwargs=self.qaoa_inst.minimizer_kwargs)
        cost_ham = reduce(lambda x, y: x + y, self.qaoa_inst.cost_ham)
        # maximizing the cost function!
        param_prog = self.qaoa_inst.get_parameterized_program()
        result = vqe.vqe_run(param_prog,
                             cost_ham,
                             stacked_params,
                             qc=self.qaoa_inst.qc,
                             **self.qaoa_inst.vqe_options)
        best_betas = result.x[:self.qaoa_inst.steps]
        best_gammas = result.x[self.qaoa_inst.steps:]
        optimization_trajectory = result.iteration_params
        energy_history = result.expectation_vals

        if self.ax is not None and self.visualize and self.qaoa_inst.steps == 1:
            plot_optimization_trajectory(self.ax, optimization_trajectory)
        return best_betas, best_gammas
示例#2
0
    def get_angles(self):
        """
        Finds optimal angles with the quantum variational eigensolver method.

        Stored VQE result

        :returns: ([list], [list]) A tuple of the beta angles and the gamma
                  angles for the optimal solution.
        """
        stacked_params = np.hstack((self.betas, self.gammas))
        vqe = VQE(self.minimizer,
                  minimizer_args=self.minimizer_args,
                  minimizer_kwargs=self.minimizer_kwargs)
        cost_ham = reduce(lambda x, y: x + y, self.cost_ham)
        # maximizing the cost function!
        param_prog = self.get_parameterized_program()
        result = vqe.vqe_run(param_prog,
                             cost_ham,
                             stacked_params,
                             qvm=self.qvm,
                             **self.vqe_options)
        self.result = result
        betas = result.x[:self.steps]
        gammas = result.x[self.steps:]
        return betas, gammas
示例#3
0
    def one_step_grid_search(self, current_step):
        """
        Grid search on n-th pair of QAOA angles, where n=current_step.

        Args:
            current_step (int): specify on which layer do we perform search.

        Returns:
            best_beta, best_gamma (floats): best values of the beta and gamma found. 
        """
        self.qaoa_inst.steps = current_step
        best_beta = None
        best_gamma = None
        best_energy = np.inf

        fixed_betas = self.qaoa_inst.betas
        fixed_gammas = self.qaoa_inst.gammas
        beta_range = np.linspace(0, np.pi, self.grid_size)
        gamma_range = np.linspace(0, 2 * np.pi, self.grid_size)

        vqe = VQE(self.qaoa_inst.minimizer,
                  minimizer_args=self.qaoa_inst.minimizer_args,
                  minimizer_kwargs=self.qaoa_inst.minimizer_kwargs)
        cost_hamiltonian = reduce(lambda x, y: x + y, self.qaoa_inst.cost_ham)
        for beta in beta_range:
            for gamma in gamma_range:
                betas = np.append(fixed_betas, beta)
                gammas = np.append(fixed_gammas, gamma)
                stacked_params = np.hstack((betas, gammas))
                program = self.qaoa_inst.get_parameterized_program()
                energy = vqe.expectation(program(stacked_params),
                                         cost_hamiltonian, self.samples,
                                         self.qaoa_inst.qc)
                print(beta, gamma, end="\r")
                if energy < best_energy:
                    best_energy = energy
                    best_beta = beta
                    best_gamma = gamma

        return best_beta, best_gamma
示例#4
0
for p in range(0, l - 1, 2):
    for r in range(0, l - 1, 2):
        h_pqrs[p, p + 1, r, r + 1] = -0.5 * g

Efci = FCI(n, l, h_pq, h_pqrs)
print('FCI energy :', Efci)

pairing = PairingHamiltonian(n, l, h_pq, h_pqrs)

options = {'shots': 1000, 'print': True}
#options = {'shots':1000,
#           'optimization_level':1,
#           'device':'ibmq_london',
#           'layout':[0,3,2,1],
#           #'noise_model':True,
#           'basis_gates':True,
#           'coupling_map':True,
#           'print':True}
model = VQE(pairing,
            Minimizer('Cobyla', tol=1e-04),
            'RYPAIRING',
            options=options)
param = model.optimize()
param = [param]
print(param)
num = 10
Es = np.zeros(num)
for i in range(num):
    Es[i] = model.expval(param)
print('E =', np.mean(Es), '+-', np.std(Es))
示例#5
0
    option1 = {'shots':shots,
               'optimization_level':1,
               #'seed':1,
               'print':False}
    option2 = {'shots':shots,
               'optimization_level':1,
               'device':'ibmq_{}'.format(device),
               'layout':[1,0,2,3],
               'noise_model':True,
               'basis_gates':True,
               'coupling_map':True,
               #'seed':1,
               'meas_fitter':False,
               'print':False}
    option3 = {'shots':shots,
               'optimization_level':1,
               'device':'ibmq_{}'.format(device),
               'layout':[1,0,2,3],
               'noise_model':True,
               'basis_gates':True,
               'coupling_map':True,
               #'seed':1,
               'print':False}
    optionz = [option1,option2,option3]
    for o,options in enumerate(optionz):
        print('For option',o+1)
        for i in range(25):
            model = VQE(pairing,Minimizer('Powell'),'RYPAIRING',options=options)
            data[s,o,i] = model.expval(theta)
np.save('variance_{}_{}t.npy'.format(device,25),data)
示例#6
0
i = 0
for R in tqdm(Rs):
    h, v, Enuc, E = get_H2(R)
    #fci_coeffs[i] = FCI(h,v)
    FCIs[i] = E['fci']
    HFs[i] = E['hf']

    h2 = SecondQuantizedHamiltonian(n,
                                    l,
                                    h,
                                    v,
                                    nuclear_repulsion=Enuc,
                                    add_spin=True)

    h2.group_paulis(qwc=True, gc=True)

    model = VQE(h2,
                Minimizer('Cobyla', tol=1 / (10 * shots), disp=False),
                'RYRZ',
                options=options)
    theta = model.optimize()
    Es[i], VARs[i] = model.get_mean(theta, N=10000, M=10)
    #vqe_coeffs[i] = model.get_state_coeffs(theta)
    i += 1

np.save('RYRZ/bonds.npy', Rs)
np.save('RYRZ/fci.npy', FCIs)
np.save('RYRZ/hf.npy', HFs)
np.save('RYRZ/E.npy', Es)
np.save('RYRZ/var.npy', VARs)
示例#7
0
    'noise_model': True,
    'basis_gates': True,
    'coupling_map': True,
    'print': False
}
#model = VQE(pairing,Minimizer('Powell'),'RYRZ',ansatz_depth=10,options=options)

# Get grid
grid_points = 50
x = np.linspace(0, 2 * np.pi, grid_points)
y = np.linspace(0, 2 * np.pi, grid_points)
params = []
for i, xi in enumerate(x):
    for j, yi in enumerate(y):
        params.append([xi, yi])
Es = np.zeros(grid_points * grid_points)

vqe = VQE(pairing, Minimizer('Powell'), 'RYRZ', options=options)

og_params = vqe.theta
assert len(params) == grid_points * grid_points
i = 0
for theta in tqdm(params):
    #print('{} / {}'.format(i+1,grid_points*grid_points))
    Es[i] = vqe.expval(theta)
    i += 1

np.save('data/brute/ryrz/grid.npy', x)
np.save('data/brute/ryrz/parameters.npy', np.asarray(params))
np.save('data/brute/ryrz/values1000.npy', Es)
示例#8
0
                                nuclear_repulsion=Enuc,
                                add_spin=True)
t2 = time.time()
print('Time:', t2 - t1)

h2.group_paulis(qwc=True, gc=True)

#options = {'count_states':False,'shots':1000,'print':True}
#options = {'shots':10000,'print':True}
options = {
    'shots': 10000,
    #'seed':3,
    #'optimization_level':1,
    #'device':'ibmq_essex',
    #'meas_fit':True,
    #'layout':[0,1,2,3],
    #'noise_model':True,
    #'basis_gates':True,
    #'coupling_map':True,
    'print': True
}
model = VQE(h2,
            Minimizer('Cobyla'),
            'RYPAIRING',
            ansatz_depth=1,
            options=options)

theta = model.optimize()
print(model.get_state_coeff(theta))
print(model.get_mean(theta))
示例#9
0
pairing.group_paulis(qwc=True,gc=True)



#theta = [5.829889373194686] # Hardcode good parameter
#theta = [-0.4]


#options = {'count_states':False,'shots':1000,'print':True}
#options = {'shots':10000,'print':True}
options = {'shots':1000,
           #'seed':1,
           'optimization_level':3,
           'backend':qcomp,
           'ibmq':True,
           #'device':'ibmq_london',
           #'meas_fit':True,
           #'layout':[0,3,2,1],  
           #'layout':[1,0,2,3],  
           #'noise_model':True,
           'basis_gates':True,
           #'coupling_map':True,
           'print':True}
model = VQE(pairing,Minimizer('Cobyla',tol=1e-05),'UCCD',options=options)
#print(len(model.circuit_list))
#theta = model.optimize(theta)
#print(theta)
#print(model.get_mean(theta))
print(model.expval(theta))

示例#10
0
                                l,
                                h_pq,
                                h_pqrs,
                                nuclear_repulsion=Enuc,
                                add_spin=True)

grid_points = 60
x = np.linspace(-0.1, 0.05, grid_points)
#params = [[i] for i in x]
params = []
for i in x:
    for j in x:
        params.append(np.array([i, j]))
Es = np.zeros(grid_points * grid_points)

shots = 1000
options = {'shots': shots}
i = 0
for theta in tqdm(params):
    vqe = VQE(H2,
              QuantumGradientDescent('RMSprop'),
              ansatz='RY',
              options=options)
    #print('{} / {}'.format(i+1,grid_points))
    Es[i] = vqe.expval(theta)
    i += 1

np.save('data/brute/grid.npy', x)
np.save('data/brute/parameters.npy', np.asarray(params))
np.save('data/brute/values{}.npy'.format(shots), Es)
示例#11
0
qk_cb = qk.ClassicalRegister(l)
qk_qc = qk.QuantumCircuit(qk_qb,qk_cb)

my_qc = my_ucc(theta,my_qc,my_qb)
qk_qc = qk_ucc.construct_circuit(theta,qk_qb)


def qk_ucc_func(theta,qc,qb):
    return qk_ucc.construct_circuit(theta,q=qk_qb)



my_vqe = VQE(n_qubits = l,
             n_fermi = n,
             ansatz = my_ucc,
             circuit_list = circuit_list,
             shots = 1000,
             seed=1,
             count_states=True)

qk_vqe = VQE(n_qubits = l,
             n_fermi = n,
             ansatz = qk_ucc_func,
             circuit_list = circuit_list,
             shots = 1000,
             seed=1,
             count_states=True)

my_E = my_vqe.expval(theta)
qk_E = qk_vqe.expval(theta)
示例#12
0
        'noise_model': True,
        'basis_gates': True,
        'coupling_map': True,
        #'seed':1,
        'meas_fit': False,
        'print': False
    }
    option3 = {
        'shots': shots,
        'optimization_level': 1,
        'device': 'ibmq_{}'.format(device),
        'layout': [1, 0, 2, 3],
        'noise_model': True,
        'basis_gates': True,
        'coupling_map': True,
        #'seed':1,
        'print': False
    }
    optionz = [option1, option2, option3]
    for o, options in enumerate(optionz):
        model = VQE(pairing,
                    Minimizer('Cobyla', tol=1e-04, disp=False),
                    ansatz,
                    options=options)
        theta = model.optimize()
        data[i, o], _ = model.get_mean(theta)
    fci[i] = FCI(n, l, h_pq, h_pqrs)
    i += 1
np.save('{}_{}_{}shots.npy'.format(device, ansatz, shots), data)
np.save('fci.npy', fci)
示例#13
0
           'device':'ibmq_{}'.format(device),
           'layout':[1,0,2,3],
           'noise_model':True,
           'basis_gates':True,
           'coupling_map':True,
           #'seed':1,
           'meas_fit':False,
           'print':False}
option3 = {'shots':shots,
           'optimization_level':1,
           'device':'ibmq_{}'.format(device),
           'layout':[1,0,2,3],
           'noise_model':True,
           'basis_gates':True,
           'coupling_map':True,
           #'seed':1,
           'print':False}
optionz = [option1,option2,option3]
model = VQE(pairing,Minimizer('Cobyla',tol=1e-05,disp=False),ansatz,options=optionz[0])
theta = model.optimize()
mean,var = model.get_mean(theta)
coeff = model.get_state_coeff(theta)
fciE,fciV = FCI(n,l,h_pq,h_pqrs,ret_all=True) 
print(fciE[0])
print(mean,var)

fciCoef = np.power(fciV[:,0],2)
print(fciCoef)
print(coeff)
print(np.linalg.norm(fciCoef-coeff))
示例#14
0
print('FCI energy :', Efci)

pairing = PairingHamiltonian(n, l, h_pq, h_pqrs)
#for i,circ in enumerate(pairing.circuit_list('vqe')): print(i,'\n',circ)

#options = {'count_states':False,'shots':1000,'print':False}
options = {
    'shots': 1000,
    'optimization_level': 1,
    'device': 'ibmq_london',
    'layout': [1, 0, 2, 3],
    'noise_model': True,
    'basis_gates': True,
    'coupling_map': True,
    'print': False
}
#methods = ['','adam','adagrad','rmsprop']
methods = ['Powell', 'Nelder-Mead']
maxit = 100
#data = np.zeros((len(methods),maxit))
#theta = 2*np.pi*np.random.randn(1)
theta = np.array([-9.31816914])
for i, method in enumerate(methods):
    vqe = VQE(pairing, Minimizer(method, max_evals=200), 'RY', options=options)
    #vqe = VQE(pairing,QuantumGradientDescent(method,max_iter=maxit),'RY',options=options)
    vqe.optimize(theta.copy())
    #data[i] = vqe.optimizer.energies
    np.save('data/optimization/{}_n.npy'.format(method),
            np.array(vqe.energies))
#np.save('data/optimization/QGD.npy',data)
示例#15
0
    def simple_grid_search_angles(self, save_data=False):
        """
        Finds optimal angles for QAOA by performing grid search on all the angles.
        This is not recommended for higher values of steps parameter, 
        since it results in grid_size**(2*steps) evaluations.

        Returns:
            best_betas, best_gammas (np.arrays): best values of the betas and gammas found. 

        """
        best_betas = None
        best_gammas = None
        best_energy = np.inf

        # For some reasons np.meshgrid returns columns in order, where values in second
        # grow slower than in the first one. This a fix to it.
        if self.qaoa_inst.steps == 1:
            column_order = [0]
        else:
            column_order = [1, 0] + list(range(2, self.qaoa_inst.steps))

        new_indices = np.argsort(column_order)
        beta_ranges = [np.linspace(0, np.pi, self.grid_size)
                       ] * self.qaoa_inst.steps
        all_betas = np.vstack(np.meshgrid(*beta_ranges)).reshape(
            self.qaoa_inst.steps, -1).T
        all_betas = all_betas[:, column_order]

        gamma_ranges = [np.linspace(0, 2 * np.pi, self.grid_size)
                        ] * self.qaoa_inst.steps
        all_gammas = np.vstack(np.meshgrid(*gamma_ranges)).reshape(
            self.qaoa_inst.steps, -1).T
        all_gammas = all_gammas[:, column_order]

        vqe = VQE(self.qaoa_inst.minimizer,
                  minimizer_args=self.qaoa_inst.minimizer_args,
                  minimizer_kwargs=self.qaoa_inst.minimizer_kwargs)
        cost_hamiltonian = reduce(lambda x, y: x + y, self.qaoa_inst.cost_ham)
        all_energies = []
        data_to_save = []
        if save_data:
            file_name = "_".join(
                [str(self.m), "grid",
                 str(self.grid_size),
                 str(time.time())]) + ".csv"
        for betas in all_betas:
            for gammas in all_gammas:
                stacked_params = np.hstack((betas, gammas))
                program = self.qaoa_inst.get_parameterized_program()
                energy = vqe.expectation(program(stacked_params),
                                         cost_hamiltonian, self.samples,
                                         self.qaoa_inst.qc)
                all_energies.append(energy)
                if self.verbose:
                    print(betas, gammas, energy, end="\r")
                if save_data:
                    data_to_save.append(np.hstack([betas, gammas, energy]))
                if energy < best_energy:
                    best_energy = energy
                    best_betas = betas
                    best_gammas = gammas
                    if self.verbose:
                        print("Lowest energy:", best_energy)
                        print("Angles:", best_betas, best_gammas)
            if save_data:
                np.savetxt(file_name, np.array(data_to_save), delimiter=",")

        if self.visualize:
            if self.qaoa_inst.steps == 1:
                self.ax = plot_energy_landscape(all_betas,
                                                all_gammas,
                                                np.array(all_energies),
                                                log_legend=True)
            else:
                plot_variance_landscape(all_betas, all_gammas,
                                        np.array(all_energies))

        return best_betas, best_gammas
示例#16
0
    'print': True
}
options_q = {
    'shots': 2000,
    #'seed':1,
    'optimization_level': 1,
    'backend': qcomp,
    'ibmq': True,
    #'device':'ibmq_london',
    #'meas_fit':True,
    #'layout':[0,3,2,1],
    'layout': [0, 1, 2, 3],
    #'layout':[1,0,2,3],
    #'noise_model':True,
    'basis_gates': True,
    #'coupling_map':True,
    'print': True
}
#model = VQE(h2,Minimizer('Cobyla',tol=1e-05),'RYPAIRING',options=options_i)
modelq = VQE(h2,
             Minimizer('Cobyla', tol=1e-06, max_iter=70),
             'RYPAIRING',
             options=options_q)
theta = modelq.optimize()

save_str = '0' if R < 1 else ''
save_str += str(int(R * 100))

np.save('E_{}.npy'.format(save_str), np.load('.ibmq_energies.npy'))
np.save('t_{}.npy'.format(save_str), np.load('.ibmq_theta.npy'))
示例#17
0
Pairing.set_integrals(h_pq, h_pqrs)
Pairing.get_circuit()
circuit_list = Pairing.to_circuit_list(ptype='vqe')

all_shots = np.linspace(1000, 100000, 100)
Es = np.zeros(100)
legal = np.zeros(100)
illegal = np.zeros(100)

i = 0
for shot in tqdm(all_shots):
    model = VQE(
        n_qubits=l,
        ansatz=UCCD,
        circuit_list=circuit_list,
        shots=500,  #int(shot),
        ancilla=0,
        seed=None,
        prnt=False,
        max_energy=False,
        count_states=True)
    Es[i] = model.expval(theta)
    legal[i] = model.legal
    illegal[i] = model.illegal
    i += 1

np.save('data/shots/shots.npy', all_shots)
np.save('data/shots/values.npy', Es)
np.save('data/shots/legal.npy', legal)
np.save('data/shots/illegal.npy', illegal)
示例#18
0
E = np.load('calculated/E_{}.npy'.format(Rstr))

t = np.load('calculated/t_{}.npy'.format(Rstr))

theta = t[-1]

options_q = {
    'shots': 4000,
    #'seed':1,
    'optimization_level': 1,
    'backend': qcomp,
    'ibmq': True,
    #'device':'ibmq_london',
    #'meas_fit':True,
    #'layout':[0,3,2,1],
    'layout': [0, 1, 2, 3],
    #'layout':[1,0,2,3],
    #'noise_model':True,
    'basis_gates': True,
    #'coupling_map':True,
    'print': True
}
#model = VQE(h2,Minimizer('Cobyla',tol=1e-05),'RYPAIRING',options=options_i)
modelq = VQE(h2,
             Minimizer('Cobyla', tol=1e-06, max_iter=70),
             'RYPAIRING',
             options=options_q)
m, v = modelq.get_mean(theta)
np.save('calculated/mean_{}.npy'.format(Rstr), m)
np.save('calculated/var_{}.npy'.format(Rstr), v)
示例#19
0
    'layout': layout,
    'noise_model': True,
    'basis_gates': True,
    'coupling_map': True,
    #'seed':1,
    'meas_fitter': False,
    'print': False
}
option3 = {
    'shots': 1000,
    'optimization_level': 1,
    'device': 'ibmq_london',
    'layout': layout,
    'noise_model': True,
    'basis_gates': True,
    'coupling_map': True,
    #'seed':1,
    'print': False
}
options = [option1, option2, option3]
data = np.zeros((3, points))
for j in range(3):
    i = 0
    for theta in tqdm(thetas):
        vqe = VQE(pairing, SPSA(), 'UCCD', options=options[j])
        data[j, i] = vqe.expval(theta)
        i += 1
np.save('UCCD/LONDON_GC_normal.npy', data[0])
np.save('UCCD/LONDON_GC_noisy_n.npy', data[1])
np.save('UCCD/LONDON_GC_noisy_w.npy', data[2])
示例#20
0
    for g in tqdm(gs):
        h_pq, h_pqrs, Efci, Ehf = get_pairing_matrix(n, l, delta, g, w_E=True)
        fci[i] = Efci
        hf[i] = Ehf
        #print('FCI:',fci[i])
        #print('HF:',Ehf)
        pairing = PairingHamiltonian(n, l, h_pq, h_pqrs)
        #pairing = SecondQuantizedHamiltonian(n,l,h_pq,h_pqrs)
        pairing.group_paulis()
        #print('Num measures:',len(pairing.circuit_list('vqe')))
        options = {
            'shots': shots,
            #'optimization_level':1,
            #'seed':1,
            'print': False
        }
        model = VQE(pairing,
                    Minimizer('Cobyla', tol=1e-06, disp=False),
                    ansatz,
                    ansatz_depth=depth,
                    options=options)
        theta = model.optimize()
        data[i], _ = model.get_mean(theta)
        print(data[i])
        coeff[i] = model.get_state_coeff(theta)
        i += 1
    np.save('E_{}_{}shots_5g_10g.npy'.format(ansatz, shots), data)
    np.save('coeff_{}_{}shots_5g_10g.npy'.format(ansatz, shots), coeff)
    #np.save('fci.npy',fci)
    #np.save('hf.npy',hf)
示例#21
0
    #'noise_model':True,
    #'basis_gates':True,
    #'coupling_map':True,
    #'seed':1,
    'print': False
}
method = 'rmsprop'
maxit = 100
tols = [1e-04, 1e-05]

avgs = [2, 5, 10, 20]

theta = np.array([-9.31816914])  # Bad theta value
for j, tol in enumerate(tols):
    print('For tolerance', tol)
    vqe = VQE(pairing,
              QuantumGradientDescent(method, max_iter=maxit, tol=tol),
              'RY',
              options=options)
    vqe.optimize(theta.copy())
    Es = vqe.optimizer.energies
    mean = [np.mean(Es[-i:]) for i in avgs]
    var = [np.var(Es[-i:]) for i in avgs]
    print('Num    Mean        Var')
    for i, a in enumerate(avgs):
        print('{:<8}{:<12.8f}{:.8f}'.format(a, mean[i], var[i]))
    #plt.figure(j)
    plt.plot(vqe.optimizer.thetas, label='tol {}'.format(tol))
plt.legend()
plt.show()
示例#22
0
VARs_noisy = np.zeros_like(omegas)
vqe_coeffs_noisy = np.zeros((len(omegas), 6))

i = 0
for omega in tqdm(omegas):
    h, v, E = get_qdot_matrix(n, l, omega)
    ev, vv = FCI(n, l, h, v, ret_all=True)
    FCIs[i] = ev[0]
    HFs[i] = E[0].real
    fci_coeffs[i] = vv[:, 0].real
    h2 = SecondQuantizedHamiltonian(n, l, h, v, anti_symmetric=True)

    h2.group_paulis(qwc=True, gc=True)
    # Ideal
    model = VQE(h2,
                Minimizer('Cobyla', tol=1 / (100 * shots), disp=False),
                'UCCSD',
                options=option_ideal)
    theta = model.optimize()
    Es_ideal[i], VARs_ideal[i] = model.get_mean(theta, N=10000, M=10)
    vqe_coeffs_ideal[i] = model.get_state_coeff(theta)
    # Noisy
    model = VQE(h2,
                Minimizer('Cobyla', tol=1 / (100 * shots), disp=False),
                'UCCSD',
                options=option_noisy)
    theta = model.optimize()
    Es_noisy[i], VARs_noisy[i] = model.get_mean(theta, N=10000, M=10)
    vqe_coeffs_noisy[i] = model.get_state_coeff(theta)
    i += 1

np.save('UCC/bonds.npy', omegas)
示例#23
0
           'layout':[1,0,2,3],
           'noise_model':True,
           'basis_gates':True,
           'coupling_map':True,
           #'seed':1,
           'meas_fitter':False,
           'print':False}
option3 = {'shots':1000,
           'optimization_level':1,
           'device':'ibmq_essex',
           'layout':[1,0,2,3],
           'noise_model':True,
           'basis_gates':True,
           'coupling_map':True,
           #'seed':1,
           'print':False}
options = [option1,option2,option3]
data = np.zeros((3,points))
for j in range(1,3):
    i = 0
    for theta in tqdm(thetas):
        vqe = VQE(pairing,
                  SPSA(),
                  'RYPAIRING',
                  options=options[j])
        data[j,i] = vqe.expval(theta)
        i += 1
#np.save('RY/ESSEX_GC_normal.npy',data[0])
np.save('RY/ESSEX_GC_noisy_n.npy',data[1])
np.save('RY/ESSEX_GC_noisy_w.npy',data[2])
示例#24
0
for p in range(0, l - 1, 2):
    for r in range(0, l - 1, 2):
        h_pqrs[p, p + 1, r, r + 1] = -0.5 * g

UCCD = UnitaryCoupledCluster(n, l, 'D', 1)
theta = UCCD.new_parameters()

Pairing = SecondQuantizedHamiltonian(n, l, h_pq, h_pqrs)

options = {'shots': 10000}

methods = ['Powell', 'Cobyla', 'Nelder-Mead']
for method in methods:
    new_theta = theta
    print('VQE with optimization method:', method)
    model = VQE(Pairing, ansatz='UCCD', options=options)
    model.optimize_classical(method=method)
    np.save('data/' + method + '10k.npy', model.energies)

theta = Pairing.theta
model = VQE(Pairing, ansatz='UCCD', options=options)
opt_options = {'feedback': 1, 'grad_avg': 5}
optimization = SPSA(model.expval,
                    theta,
                    min_change=0.1,
                    noise_var=0.01,
                    options=opt_options)
optimization.run()
method = 'SPSA'
np.save('data/' + method + '10k.npy', model.energies)
示例#25
0
import time
t1 = time.time()
pairing = PairingHamiltonian(n, l, h_pq, h_pqrs)
t2 = time.time()
print('Time:', t2 - t1)

pairing.group_paulis(qwc=False, gc=True)

theta = [5.829889373194686]  # Hardcode good parameter

#options = {'count_states':False,'shots':1000,'print':True}
#options = {'shots':10000,'print':True}
options = {
    'shots': 1000,
    'seed': 1,
    #'optimization_level':1,
    #'device':'ibmq_london',
    #'meas_fit':True,
    #'layout':[0,3,2,1],
    #'noise_model':True,
    #'basis_gates':True,
    #'coupling_map':True,
    'print': True
}
model = VQE(pairing, Minimizer('Powell'), 'RYPAIRING', options=options)

#param = model.optimize()

#print(model.theta)
print(model.expval(theta))
示例#26
0
h, v, Enuc, E = get_H2_info(0.7)
fci = E['fci']
hf = E['hf']

print('HF  energy:', hf)
print('FCI energy:', fci)

mol = SecondQuantizedHamiltonian(2,
                                 4,
                                 h,
                                 v,
                                 nuclear_repulsion=Enuc,
                                 add_spin=True)

options = {
    'shots': 1000,
    'optimization_level': 1,
    #'device':'ibmq_london',
    #'layout':[1,0,2,3],
    #'noise_model':True,
    #'basis_gates':True,
    #'coupling_map':True,
    #'seed':1,
    'print': True
}
#options = {'shots':10000,'print':True}
alg = VQE(mol, Minimizer('Cobyla'), 'RY', options=options)
alg.optimize()
#alg.expval([0,0,0,0,0])
示例#27
0
h_pqrs = np.zeros((l, l, l, l))
for p in range(0, l - 1, 2):
    for r in range(0, l - 1, 2):
        h_pqrs[p, p + 1, r, r + 1] = -0.5 * g

# Prepare circuit list
pairing = SecondQuantizedHamiltonian(n, l, h_pq, h_pqrs)

grid_points = 500
x = np.linspace(0, 2 * np.pi, grid_points)
params = [[i] for i in x]
Es = np.zeros(grid_points)
legal = np.zeros(grid_points)
illegal = np.zeros(grid_points)

i = 0
for theta in tqdm(params):
    vqe = VQE(pairing, ansatz='UCCD')
    vqe.options['shots'] = 1000
    vqe.options['count_states'] = True
    vqe.options['backend'] = 'statevector_simulator'
    Es[i] = vqe.expval()
    legal[i] = vqe.legal
    illegal[i] = vqe.illegal
    i += 1

np.save('data/brute/1D/x.npy', x)
np.save('data/brute/1D/values1000.npy', Es)
np.save('data/brute/1D/legal1000.npy', legal)
np.save('data/brute/1D/illegal1000.npy', illegal)
示例#28
0
Pairing.set_integrals(h_pq, h_pqrs)
Pairing.get_circuit()
circuit_list = Pairing.to_circuit_list(ptype='vqe')
#print('new')
for i in circuit_list:
    print(i)

#p2 = hamil(l)
#cir = p2.get_circuits(h_pq,h_pqrs)
#print('old')
#for i in cir: print(i)

model = VQE(n_qubits=l,
            ansatz=UCCD,
            circuit_list=circuit_list,
            shots=500,
            ancilla=0,
            prnt=True,
            max_energy=False)
#model.optimize_classical(new_theta,method='Cobyla')
#model.optimize_gradient(new_theta)
#options = {'feedback':1,'grad_avg':5}
#optimization = SPSA(model.expval,
#                    new_theta,
#                    min_change=0.1,
#                    noise_var = 0.01,
#                    options=options)
#optimization()
#method = 'SPSA'
#np.save('data/'+method+'.npy', model.energies)