# Initialize models model_B = VRAEC(num_class=num_class, sequence_length=sequence_length_B, number_of_features=number_of_features_B, hidden_size=hidden_size, hidden_layer_depth=hidden_layer_depth, latent_length=latent_length, batch_size=batch_size, learning_rate=learning_rate, n_epochs=n_epochs, dropout_rate=dropout_rate, cuda=cuda, model_name=model_name_B, header=header_B, device=device) model_B.to(device) model_I = VRAEC(num_class=num_class, sequence_length=sequence_length_I, number_of_features=number_of_features_I, hidden_size=hidden_size, hidden_layer_depth=hidden_layer_depth, latent_length=latent_length, batch_size=batch_size, learning_rate=learning_rate, n_epochs=n_epochs, dropout_rate=dropout_rate, cuda=cuda, model_name=model_name_I, header=header_I, device=device)
hidden_layer_depth = hidden_layer_depth, latent_length = latent_length, batch_size = batch_size, learning_rate = learning_rate, n_epochs = n_epochs, dropout_rate = dropout_rate, cuda = cuda, print_every=print_every, clip=clip, max_grad_norm=max_grad_norm, dload = logDir, model_name=model_name, header=header, device = device) model.to(device) # In[7]: criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) cl_loss_fn = nn.NLLLoss() recon_loss_fn = nn.MSELoss() # In[8]: # 1st stage training: with recon_loss
cuda=cuda, print_every=print_every, clip=clip, max_grad_norm=max_grad_norm, dload=logDir, model_name=model_name_B, header=header_B, device=device) model_B_pretrained_dir = logDir + model_name_B + '.pt' if device == torch.device('cpu'): model_B_pretrained.load_state_dict( torch.load(model_B_pretrained_dir, map_location=torch.device('cpu'))) else: model_B_pretrained.load_state_dict(torch.load(model_B_pretrained_dir)) model_B_pretrained.to(device) model_B_pretrained.eval() print("load model from") print(model_name_B) model_I = VRAEC(num_class=num_class, sequence_length=sequence_length_I, number_of_features=number_of_features_I, hidden_size=hidden_size, hidden_layer_depth=hidden_layer_depth, latent_length=latent_length, batch_size=batch_size, learning_rate=learning_rate, n_epochs=n_epochs, dropout_rate=dropout_rate,
hidden_size=hidden_size, hidden_layer_depth=hidden_layer_depth, latent_length=latent_length, batch_size=batch_size, learning_rate=learning_rate, n_epochs=n_epochs, dropout_rate=dropout_rate, cuda=cuda, print_every=print_every, clip=clip, max_grad_norm=max_grad_norm, dload=logDir, model_name=model_name_B, header=header_B, device=device) model_B.to(device) model_I = VRAEC(num_class=num_class, sequence_length=sequence_length_I, number_of_features=number_of_features_I, hidden_size=hidden_size, hidden_layer_depth=hidden_layer_depth, latent_length=latent_length, batch_size=batch_size, learning_rate=learning_rate, n_epochs=n_epochs, dropout_rate=dropout_rate, cuda=cuda, print_every=print_every, clip=clip, max_grad_norm=max_grad_norm,
batch_size=batch_size, learning_rate=learning_rate, n_epochs=n_epochs, dropout_rate=dropout_rate, cuda=cuda, print_every=print_every, clip=clip, max_grad_norm=max_grad_norm, dload=logDir, model_name=model_name_B, header=header_B, w_r=w_r, w_k=w_k, w_c=w_c, device=device) model_B.to(device) model_I = VRAEC(num_class=num_class, sequence_length=sequence_length_I, number_of_features=number_of_features_I, hidden_size=hidden_size, hidden_layer_depth=hidden_layer_depth, latent_length=latent_length, batch_size=batch_size, learning_rate=learning_rate, n_epochs=n_epochs, dropout_rate=dropout_rate, cuda=cuda, print_every=print_every, clip=clip, max_grad_norm=max_grad_norm,
model_B = VRAEC(num_class=num_class, sequence_length=sequence_length_B, number_of_features=number_of_features_B, hidden_size=hidden_size, hidden_layer_depth=hidden_layer_depth, latent_length=latent_length, batch_size=batch_size, learning_rate=learning_rate, n_epochs=n_epochs, dropout_rate=dropout_rate, cuda=cuda, model_name=model_name_B, header=header_B, device=device) model_B.to(device) model_I_pretrained = VRAEC(num_class=num_class, sequence_length=sequence_length_I, number_of_features=number_of_features_I, hidden_size=hidden_size, hidden_layer_depth=hidden_layer_depth, latent_length=latent_length, batch_size=batch_size, learning_rate=learning_rate, n_epochs=n_epochs, dropout_rate=dropout_rate, cuda=cuda, model_name=model_name_I, header=header_I, device=device)