def plotxy( data, xerrors=None, yerrors=None, xlimits=None, ylimits=None, xscale=1, yscale=None, xlogscale=False, ylogscale=False, c="k", alpha=1, xtitle="x", ytitle="y", title="", titleSize=None, ec=None, lc="k", lw=2, line=True, dashed=False, splined=False, marker=None, ms=None, mc=None, ma=None, ): """Draw a 2D plot of variable x vs y. :param list data: input format can be [allx, ally] or [(x1,y1), (x2,y2), ...] :param list xerrors: set uncertainties for the x variable, shown as error bars. :param list yerrors: set uncertainties for the y variable, shown as error bars. :param list xlimits: set limits to the range for the x variable :param list ylimits: set limits to the range for the y variable :param float xscale: set scaling factor in x. Default is 1. :param float yscale: set scaling factor in y. Automatically calculated to get a reasonable aspect ratio. Scaling factor is saved in `info['yscale']`. :param bool xlogscale: set x logarithmic scale. :param bool ylogscale: set y logarithmic scale. :param str c: color of frame and text. :param float alpha: opacity of frame and text. :param str xtitle: title label along x-axis. :param str ytitle: title label along y-axis. :param str title: histogram title on top. :param float titleSize: size of title :param str ec: color of error bar, by default the same as marker color :param str lc: color of line :param float lw: width of line :param bool line: join points with line :param bool dashed: use a dashed line style :param bool splined: spline the line joining the point as a countinous curve :param str,int marker: use a marker shape for the data points :param float ms: marker size. :param str mc: color of marker :param float ma: opacity of marker |plotxy| |plotxy.py|_ """ if len(data) == 2 and len(data[0]) > 1 and len(data[0]) == len(data[1]): #format is [allx, ally], convert it: data = np.c_[data[0], data[1]] if xlimits is not None: cdata = [] x0lim = xlimits[0] x1lim = xlimits[1] for d in data: if d[0] > x0lim and d[0] < x1lim: cdata.append(d) data = cdata if not len(data): colors.printc("Error in plotxy(): no points within xlimits", c=1) return None if ylimits is not None: cdata = [] y0lim = ylimits[0] y1lim = ylimits[1] for d in data: if d[1] > y0lim and d[1] < y1lim: cdata.append(d) data = cdata if not len(data): colors.printc("Error in plotxy(): no points within ylimits", c=1) return None data = np.array(data)[:, [0, 1]] if xlogscale: data[:, 0] = np.log(data[:, 0]) if ylogscale: data[:, 1] = np.log(data[:, 1]) x0, y0 = np.min(data, axis=0) x1, y1 = np.max(data, axis=0) if yscale is None: yscale = (x1 - x0) / (y1 - y0) * 0.75 # default 3/4 aspect ratio yscale = float(utils.precision(yscale, 1)) if abs(yscale - 1) > 0.2: ytitle += " *" + str(yscale) y0 *= yscale y1 *= yscale else: yscale = 1 scale = np.array([[xscale, yscale]]) data = np.multiply(data, scale) acts = [] if dashed: l = shapes.DashedLine(data, lw=lw, spacing=20) acts.append(l) elif splined: l = shapes.KSpline(data).lw(lw).c(lc) acts.append(l) elif line: l = shapes.Line(data, lw=lw, c=lc) acts.append(l) if marker: if ms is None: ms = (x1 - x0) / 75.0 if mc is None: mc = lc mk = shapes.Marker(marker, s=ms, alpha=ma) pts = shapes.Points(data) marked = shapes.Glyph(pts, glyphObj=mk, c=mc) acts.append(marked) if ec is None: if mc is not None: ec = mc else: ec = lc offs = (x1 - x0) / 1000 if yerrors is not None: if len(yerrors) != len(data): colors.printc( "Error in plotxy(yerrors=...): mismatched array length.", c=1) return None errs = [] for i in range(len(data)): xval, yval = data[i] yerr = yerrors[i] / 2 * yscale errs.append( shapes.Line((xval, yval - yerr, offs), (xval, yval + yerr, offs))) myerrs = merge(errs).c(ec).lw(lw).alpha(alpha) acts.append(myerrs) if xerrors is not None: if len(xerrors) != len(data): colors.printc( "Error in plotxy(xerrors=...): mismatched array length.", c=1) return None errs = [] for i in range(len(data)): xval, yval = data[i] xerr = xerrors[i] / 2 errs.append( shapes.Line((xval - xerr, yval, offs), (xval + xerr, yval, offs))) mxerrs = merge(errs).c(ec).lw(lw).alpha(alpha) acts.append(mxerrs) x0lim = x0 x1lim = x1 y0lim = y0 * yscale y1lim = y1 * yscale if xlimits is not None or ylimits is not None: if xlimits is not None: x0lim = min(xlimits[0], x0) x1lim = max(xlimits[1], x1) if ylimits is not None: y0lim = min(ylimits[0] * yscale, y0) y1lim = max(ylimits[1] * yscale, y1) rec = shapes.Rectangle([x0lim, y0lim, 0], [x1lim, y1lim, 0]) rec.alpha(0).wireframe() acts.append(rec) if title: if titleSize is None: titleSize = (x1lim - x0lim) / 40.0 tit = shapes.Text( title, s=titleSize, c=c, depth=0, alpha=alpha, pos=((x1lim + x0lim) / 2.0, y1lim, 0), justify="bottom-center", ) tit.pickable(False) acts.append(tit) settings.xtitle = xtitle settings.ytitle = ytitle asse = Assembly(acts) asse.info["yscale"] = yscale return asse
def histogram( values, xtitle="", ytitle="", bins=25, vrange=None, logscale=False, yscale=None, fill=True, gap=0.02, c="olivedrab", alpha=1, outline=True, lw=2, lc="black", errors=False, ): """ Build a histogram from a list of values in n bins. The resulting object is a 2D actor. :param int bins: number of bins. :param list vrange: restrict the range of the histogram. :param bool logscale: use logscale on y-axis. :param bool fill: fill bars woth solid color `c`. :param float gap: leave a small space btw bars. :param bool outline: show outline of the bins. :param bool errors: show error bars. |histogram| |histogram.py|_ """ if xtitle: from vtkplotter import settings settings.xtitle = xtitle if ytitle: from vtkplotter import settings settings.ytitle = ytitle fs, edges = np.histogram(values, bins=bins, range=vrange) if logscale: fs = np.log10(fs + 1) mine, maxe = np.min(edges), np.max(edges) binsize = edges[1] - edges[0] rs = [] if fill: if outline: gap = 0 for i in range(bins): p0 = (edges[i] + gap * binsize, 0, 0) p1 = (edges[i + 1] - gap * binsize, fs[i], 0) r = shapes.Rectangle(p0, p1) r.color(c).alpha(alpha).lighting("ambient") rs.append(r) if outline: lns = [[mine, 0, 0]] for i in range(bins): lns.append([edges[i], fs[i], 0]) lns.append([edges[i + 1], fs[i], 0]) lns.append([maxe, 0, 0]) rs.append(shapes.Line(lns, c=lc, alpha=alpha, lw=lw)) if errors: errs = np.sqrt(fs) for i in range(bins): x = (edges[i] + edges[i + 1]) / 2 el = shapes.Line( [x, fs[i] - errs[i] / 2, 0.1 * binsize], [x, fs[i] + errs[i] / 2, 0.1 * binsize], c=lc, alpha=alpha, lw=lw, ) pt = shapes.Point([x, fs[i], 0.1 * binsize], r=7, c=lc, alpha=alpha) rs.append(el) rs.append(pt) asse = Assembly(rs) if yscale is None: yscale = 10 / np.sum(fs) * (maxe - mine) asse.scale([1, yscale, 1]) return asse
def plotxy( data, xlimits=None, ylimits=None, xscale=1, yscale=None, xlogscale=False, ylogscale=False, c="k", alpha=1, xtitle="x", ytitle="y", title="", titleSize=None, lc="k", lw=2, dashed=False, splined=False, marker=None, ms=None, mc=None, ma=None, ): """Draw a 2D plot of variable x vs y. """ if len(data) == 2 and len(data[0]) > 1 and len(data[0]) == len(data[1]): data = np.c_[data[0], data[1]] if xlimits is not None: cdata = [] x0lim = xlimits[0] x1lim = xlimits[1] for d in data: if d[0] > x0lim and d[0] < x1lim: cdata.append(d) data = cdata if not len(data): colors.printc("Error in plotxy(): no points within xlimits", c=1) return None if ylimits is not None: cdata = [] y0lim = ylimits[0] y1lim = ylimits[1] for d in data: if d[1] > y0lim and d[1] < y1lim: cdata.append(d) data = cdata if not len(data): colors.printc("Error in plotxy(): no points within ylimits", c=1) return None data = np.array(data)[:, [0, 1]] if xlogscale: data[:, 0] = np.log(data[:, 0]) if ylogscale: data[:, 1] = np.log(data[:, 1]) x0, y0 = np.min(data, axis=0) x1, y1 = np.max(data, axis=0) if yscale is None: yscale = (x1 - x0) / (y1 - y0) * 0.75 # default 3/4 aspect ratio yscale = float(utils.precision(yscale, 1)) if abs(yscale - 1) > 0.2: ytitle += " *" + str(yscale) y0 *= yscale y1 *= yscale else: yscale = 1 scale = np.array([[xscale, yscale]]) data = np.multiply(data, scale) acts = [] if dashed: l = shapes.DashedLine(data, lw=lw, spacing=20) elif splined: l = shapes.KSpline(data).lw(lw).c(lc) else: l = shapes.Line(data, lw=lw, c=lc) acts.append(l) if marker: if ms is None: ms = (x1 - x0) / 75.0 if mc is None: mc = lc mk = shapes.Marker(marker, s=ms, alpha=ma) pts = shapes.Points(data) marked = shapes.Glyph(pts, glyphObj=mk, c=mc) acts.append(marked) x0lim = x0 x1lim = x1 y0lim = y0 * yscale y1lim = y1 * yscale if xlimits is not None or ylimits is not None: if xlimits is not None: x0lim = min(xlimits[0], x0) x1lim = max(xlimits[1], x1) if ylimits is not None: y0lim = min(ylimits[0] * yscale, y0) y1lim = max(ylimits[1] * yscale, y1) rec = shapes.Rectangle([x0lim, y0lim, 0], [x1lim, y1lim, 0]) rec.alpha(0).wireframe() acts.append(rec) if title: if titleSize is None: titleSize = (x1lim - x0lim) / 40.0 tit = shapes.Text( title, s=titleSize, c=c, depth=0, alpha=alpha, pos=((x1lim + x0lim) / 2.0, y1lim, 0), justify="bottom-center", ) tit.pickable(False) acts.append(tit) settings.xtitle = xtitle settings.ytitle = ytitle asse = Assembly(acts) asse.info["yscale"] = yscale return asse