def main(files_DEM_dir, files_DEM, files_Basin, files_Runoff, files_Extraction, startdate, enddate, input_nc, resolution, Format_DEM_dir, Format_DEM, Format_Basin, Format_Runoff, Format_Extraction): # Define a year to get the epsg and geo Startdate_timestamp = pd.Timestamp(startdate) year = Startdate_timestamp.year ############################## Drainage Direction ##################################### # Open Array DEM dir as netCDF if Format_DEM_dir == "NetCDF": file_DEM_dir = os.path.join(files_DEM_dir, "%d.nc" % year) DataCube_DEM_dir = RC.Open_nc_array(file_DEM_dir, "Drainage_Direction") geo_out_example, epsg_example, size_X_example, size_Y_example, size_Z_example, Time_example = RC.Open_nc_info( files_DEM_dir) # Create memory file for reprojection gland = DC.Save_as_MEM(DataCube_DEM_dir, geo_out_example, epsg_example) dataset_example = file_name_DEM_dir = gland # Open Array DEM dir as TIFF if Format_DEM_dir == "TIFF": file_name_DEM_dir = os.path.join(files_DEM_dir, "DIR_HydroShed_-_%s.tif" % resolution) DataCube_DEM_dir = RC.Open_tiff_array(file_name_DEM_dir) geo_out_example, epsg_example, size_X_example, size_Y_example = RC.Open_array_info( file_name_DEM_dir) dataset_example = file_name_DEM_dir # Calculate Area per pixel in m2 import wa.Functions.Start.Area_converter as AC DataCube_Area = AC.Degrees_to_m2(file_name_DEM_dir) ################################## DEM ########################################## # Open Array DEM as netCDF if Format_DEM == "NetCDF": file_DEM = os.path.join(files_DEM, "%d.nc" % year) DataCube_DEM = RC.Open_nc_array(file_DEM, "Elevation") # Open Array DEM as TIFF if Format_DEM == "TIFF": file_name_DEM = os.path.join(files_DEM, "DEM_HydroShed_m_%s.tif" % resolution) DataCube_DEM = RC.Open_tiff_array(file_name_DEM) ################################ Landuse ########################################## # Open Array Basin as netCDF if Format_Basin == "NetCDF": file_Basin = os.path.join(files_Basin, "%d.nc" % year) DataCube_Basin = RC.Open_nc_array(file_Basin, "Landuse") geo_out, epsg, size_X, size_Y, size_Z, Time = RC.Open_nc_info( file_Basin, "Landuse") dest_basin = DC.Save_as_MEM(DataCube_Basin, geo_out, str(epsg)) destLU = RC.reproject_dataset_example(dest_basin, dataset_example, method=1) DataCube_LU_CR = destLU.GetRasterBand(1).ReadAsArray() DataCube_Basin = np.zeros([size_Y_example, size_X_example]) DataCube_Basin[DataCube_LU_CR > 0] = 1 # Open Array Basin as TIFF if Format_Basin == "TIFF": file_name_Basin = files_Basin destLU = RC.reproject_dataset_example(file_name_Basin, dataset_example, method=1) DataCube_LU_CR = destLU.GetRasterBand(1).ReadAsArray() DataCube_Basin = np.zeros([size_Y_example, size_X_example]) DataCube_Basin[DataCube_LU_CR > 0] = 1 ################################ Surface Runoff ########################################## # Open Array runoff as netCDF if Format_Runoff == "NetCDF": DataCube_Runoff = RC.Open_ncs_array(files_Runoff, "Surface_Runoff", startdate, enddate) size_Z_example = DataCube_Runoff.shape[0] file_Runoff = os.path.join(files_Runoff, "%d.nc" % year) geo_out, epsg, size_X, size_Y, size_Z, Time = RC.Open_nc_info( file_Runoff, "Surface_Runoff") DataCube_Runoff_CR = np.ones( [size_Z_example, size_Y_example, size_X_example]) * np.nan for i in range(0, size_Z): DataCube_Runoff_one = DataCube_Runoff[i, :, :] dest_Runoff_one = DC.Save_as_MEM(DataCube_Runoff_one, geo_out, str(epsg)) dest_Runoff = RC.reproject_dataset_example(dest_Runoff_one, dataset_example, method=4) DataCube_Runoff_CR[i, :, :] = dest_Runoff.GetRasterBand( 1).ReadAsArray() DataCube_Runoff_CR[:, DataCube_LU_CR == 0] = -9999 DataCube_Runoff_CR[DataCube_Runoff_CR < 0] = -9999 # Open Array runoff as TIFF if Format_Runoff == "TIFF": Data_Path = '' DataCube_Runoff = RC.Get3Darray_time_series_monthly( files_Runoff, Data_Path, startdate, enddate, Example_data=dataset_example) ################################ Surface Withdrawal ########################################## # Open Array Extraction as netCDF if Format_Extraction == "NetCDF": DataCube_Extraction = RC.Open_ncs_array(files_Extraction, "Surface_Withdrawal", startdate, enddate) size_Z_example = DataCube_Extraction.shape[0] file_Extraction = os.path.join(files_Extraction, "%d.nc" % year) geo_out, epsg, size_X, size_Y, size_Z, Time = RC.Open_nc_info( file_Extraction, "Surface_Withdrawal") DataCube_Extraction_CR = np.ones( [size_Z_example, size_Y_example, size_X_example]) * np.nan for i in range(0, size_Z): DataCube_Extraction_one = DataCube_Extraction[i, :, :] dest_Extraction_one = DC.Save_as_MEM(DataCube_Extraction_one, geo_out, str(epsg)) dest_Extraction = RC.reproject_dataset_example(dest_Extraction_one, dataset_example, method=4) DataCube_Extraction_CR[i, :, :] = dest_Extraction.GetRasterBand( 1).ReadAsArray() DataCube_Extraction_CR[:, DataCube_LU_CR == 0] = -9999 DataCube_Extraction_CR[DataCube_Extraction_CR < 0] = -9999 # Open Array Extraction as TIFF if Format_Extraction == "TIFF": Data_Path = '' DataCube_Extraction = RC.Get3Darray_time_series_monthly( files_Extraction, Data_Path, startdate, enddate, Example_data=dataset_example) ################################ Create input netcdf ########################################## # Save data in one NetCDF file geo_out_example = np.array(geo_out_example) # Latitude and longitude lon_ls = np.arange(size_X_example) * geo_out_example[1] + geo_out_example[ 0] + 0.5 * geo_out_example[1] lat_ls = np.arange(size_Y_example) * geo_out_example[5] + geo_out_example[ 3] - 0.5 * geo_out_example[5] lat_n = len(lat_ls) lon_n = len(lon_ls) # Create NetCDF file nc_file = netCDF4.Dataset(input_nc, 'w') nc_file.set_fill_on() # Create dimensions lat_dim = nc_file.createDimension('latitude', lat_n) lon_dim = nc_file.createDimension('longitude', lon_n) # Create NetCDF variables crso = nc_file.createVariable('crs', 'i4') crso.long_name = 'Lon/Lat Coords in WGS84' crso.standard_name = 'crs' crso.grid_mapping_name = 'latitude_longitude' crso.projection = epsg_example crso.longitude_of_prime_meridian = 0.0 crso.semi_major_axis = 6378137.0 crso.inverse_flattening = 298.257223563 crso.geo_reference = geo_out_example lat_var = nc_file.createVariable('latitude', 'f8', ('latitude', )) lat_var.units = 'degrees_north' lat_var.standard_name = 'latitude' lat_var.pixel_size = geo_out_example[5] lon_var = nc_file.createVariable('longitude', 'f8', ('longitude', )) lon_var.units = 'degrees_east' lon_var.standard_name = 'longitude' lon_var.pixel_size = geo_out_example[1] Dates = pd.date_range(startdate, enddate, freq='MS') time_or = np.zeros(len(Dates)) i = 0 for Date in Dates: time_or[i] = Date.toordinal() i += 1 nc_file.createDimension('time', None) timeo = nc_file.createVariable('time', 'f4', ('time', )) timeo.units = 'Monthly' timeo.standard_name = 'time' # Variables demdir_var = nc_file.createVariable('demdir', 'i', ('latitude', 'longitude'), fill_value=-9999) demdir_var.long_name = 'Flow Direction Map' demdir_var.grid_mapping = 'crs' dem_var = nc_file.createVariable('dem', 'f8', ('latitude', 'longitude'), fill_value=-9999) dem_var.long_name = 'Altitude' dem_var.units = 'meters' dem_var.grid_mapping = 'crs' basin_var = nc_file.createVariable('basin', 'i', ('latitude', 'longitude'), fill_value=-9999) basin_var.long_name = 'Altitude' basin_var.units = 'meters' basin_var.grid_mapping = 'crs' area_var = nc_file.createVariable('area', 'f8', ('latitude', 'longitude'), fill_value=-9999) area_var.long_name = 'area in squared meters' area_var.units = 'squared_meters' area_var.grid_mapping = 'crs' runoff_var = nc_file.createVariable('Runoff_M', 'f8', ('time', 'latitude', 'longitude'), fill_value=-9999) runoff_var.long_name = 'Runoff' runoff_var.units = 'm3/month' runoff_var.grid_mapping = 'crs' extraction_var = nc_file.createVariable('Extraction_M', 'f8', ('time', 'latitude', 'longitude'), fill_value=-9999) extraction_var.long_name = 'Surface water Extraction' extraction_var.units = 'm3/month' extraction_var.grid_mapping = 'crs' # Load data lat_var[:] = lat_ls lon_var[:] = lon_ls timeo[:] = time_or # Static variables demdir_var[:, :] = DataCube_DEM_dir[:, :] dem_var[:, :] = DataCube_DEM[:, :] basin_var[:, :] = DataCube_Basin[:, :] area_var[:, :] = DataCube_Area[:, :] for i in range(len(Dates)): runoff_var[i, :, :] = DataCube_Runoff_CR[i, :, :] for i in range(len(Dates)): extraction_var[i, :, :] = DataCube_Extraction_CR[i, :, :] # Close file nc_file.close() return ()
def Channel_Routing(Name_NC_DEM_Dir, Name_NC_Runoff, Name_NC_Basin, Reference_data, Degrees=0): time1 = time.time() # Extract runoff data from NetCDF file Runoff = RC.Open_nc_array(Name_NC_Runoff) # Extract flow direction data from NetCDF file flow_directions = RC.Open_nc_array(Name_NC_DEM_Dir) # Extract basin data from NetCDF file Basin = RC.Open_nc_array(Name_NC_Basin) if Degrees != 0: import wa.Functions.Start.Area_converter as AC # Convert area from degrees to m2 Areas_in_m2 = AC.Degrees_to_m2(Reference_data) Runoff_in_m3_month = ((Runoff / 1000) * Areas_in_m2) else: Runoff_in_m3_month = Runoff # Get properties of the raster size_X = np.size(Runoff, 2) size_Y = np.size(Runoff, 1) # input data test dataflow_in0 = np.ones([size_Y, size_X]) dataflow_in = np.zeros( [int(np.size(Runoff_in_m3_month, 0) + 1), size_Y, size_X]) dataflow_in[0, :, :] = dataflow_in0 * Basin dataflow_in[1:, :, :] = Runoff_in_m3_month * Basin # The flow directions parameters of HydroSHED Directions = [1, 2, 4, 8, 16, 32, 64, 128] # Route the data dataflow_next = dataflow_in[0, :, :] data_flow_tot = np.zeros( [int(np.size(Runoff_in_m3_month, 0) + 1), size_Y, size_X]) dataflow_previous = np.zeros([size_Y, size_X]) while np.sum(dataflow_next) != np.sum(dataflow_previous): data_flow_round = np.zeros( [int(np.size(Runoff_in_m3_month, 0) + 1), size_Y, size_X]) dataflow_previous = np.copy(dataflow_next) for Direction in Directions: data_dir = np.zeros( [int(np.size(Runoff_in_m3_month, 0) + 1), size_Y, size_X]) data_dir[:, np.logical_and( flow_directions == Direction, dataflow_next == 1)] = dataflow_in[:, np.logical_and( flow_directions == Direction, dataflow_next == 1)] data_flow = np.zeros( [int(np.size(Runoff_in_m3_month, 0) + 1), size_Y, size_X]) if Direction == 4: data_flow[:, 1:, :] = data_dir[:, :-1, :] if Direction == 2: data_flow[:, 1:, 1:] = data_dir[:, :-1, :-1] if Direction == 1: data_flow[:, :, 1:] = data_dir[:, :, :-1] if Direction == 128: data_flow[:, :-1, 1:] = data_dir[:, 1:, :-1] if Direction == 64: data_flow[:, :-1, :] = data_dir[:, 1:, :] if Direction == 32: data_flow[:, :-1, :-1] = data_dir[:, 1:, 1:] if Direction == 16: data_flow[:, :, :-1] = data_dir[:, :, 1:] if Direction == 8: data_flow[:, 1:, :-1] = data_dir[:, :-1, 1:] data_flow_round += data_flow dataflow_in = np.copy(data_flow_round) dataflow_next[dataflow_in[0, :, :] == 0.] = 0 sys.stdout.write("\rstill %s pixels to go " % int(np.nansum(dataflow_next))) sys.stdout.flush() data_flow_tot += data_flow_round print 'time', time.time() - time1 # Seperate the array in a river array and the routed input Accumulated_Pixels = data_flow_tot[0, :, :] * Basin Routed_Array = data_flow_tot[1:, :, :] * Basin return (Accumulated_Pixels, Routed_Array)