def main(): if FLAGS.exp == 'dir64': opts = configs.config_dir64 else: assert False, 'Unknown experiment configuration' if FLAGS.zdim is not None: opts['zdim'] = FLAGS.zdim if opts['verbose']: logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(message)s') logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(message)s') wae = WAE(opts) wae.restore_checkpoint(FLAGS.checkpoint) batch_noise = wae.sample_pz(10) sample_gen = wae.sess.run(wae.decoded, feed_dict={ wae.sample_noise: batch_noise, wae.is_training: False }) img = np.hstack(sample_gen) img = (img + 1.0) / 2 plt.imshow(img) plt.savefig('img.png')
def main(): if FLAGS.exp == 'dir64': opts = configs.config_dir64 else: assert False, 'Unknown experiment configuration' if FLAGS.zdim is not None: opts['zdim'] = FLAGS.zdim if opts['verbose']: logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(message)s') logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(message)s') data = DataHandler(opts) wae = WAE(opts) wae.restore_checkpoint(FLAGS.checkpoint) batch_img = data.data[0:2] enc_vec = wae.sess.run(wae.encoded, feed_dict={ wae.sample_points: batch_img, wae.is_training: False }) vdiff = enc_vec[1] - enc_vec[0] vdiff = vdiff / 10 gen_vec = np.zeros((10, vdiff.shape[0]), dtype=np.float32) for i in range(10): gen_vec[i, :] = enc_vec[0] + vdiff * i sample_gen = wae.sess.run(wae.decoded, feed_dict={ wae.sample_noise: gen_vec, wae.is_training: False }) img = np.hstack(sample_gen) img = (img + 1.0) / 2 plt.imshow(img) plt.savefig('analogy.png')