def test_get_eval_metric_ops_raises_error_with_unsupported_metric(self): eval_config = eval_pb2.EvalConfig() eval_config.metrics_set.extend(['unsupported_metric']) categories = self._get_categories_list() eval_dict = self._make_evaluation_dict() with self.assertRaises(ValueError): eval_util.get_eval_metric_ops_for_evaluators( eval_config, categories, eval_dict)
def get_configs_from_multiple_files(model_config_path="", train_config_path="", train_input_config_path="", eval_config_path="", eval_input_config_path="", graph_rewriter_config_path=""): """Reads training configuration from multiple config files. Args: model_config_path: Path to model_pb2.DetectionModel. train_config_path: Path to train_pb2.TrainConfig. train_input_config_path: Path to input_reader_pb2.InputReader. eval_config_path: Path to eval_pb2.EvalConfig. eval_input_config_path: Path to input_reader_pb2.InputReader. graph_rewriter_config_path: Path to graph_rewriter_pb2.GraphRewriter. Returns: Dictionary of configuration objects. Keys are `model`, `train_config`, `train_input_config`, `eval_config`, `eval_input_config`. Key/Values are returned only for valid (non-empty) strings. """ configs = {} if model_config_path: model_config = model_pb2.DetectionModel() with tf.gfile.GFile(model_config_path, "r") as f: text_format.Merge(f.read(), model_config) configs["model"] = model_config if train_config_path: train_config = train_pb2.TrainConfig() with tf.gfile.GFile(train_config_path, "r") as f: text_format.Merge(f.read(), train_config) configs["train_config"] = train_config if train_input_config_path: train_input_config = input_reader_pb2.InputReader() with tf.gfile.GFile(train_input_config_path, "r") as f: text_format.Merge(f.read(), train_input_config) configs["train_input_config"] = train_input_config if eval_config_path: eval_config = eval_pb2.EvalConfig() with tf.gfile.GFile(eval_config_path, "r") as f: text_format.Merge(f.read(), eval_config) configs["eval_config"] = eval_config if eval_input_config_path: eval_input_config = input_reader_pb2.InputReader() with tf.gfile.GFile(eval_input_config_path, "r") as f: text_format.Merge(f.read(), eval_input_config) configs["eval_input_configs"] = [eval_input_config] if graph_rewriter_config_path: configs["graph_rewriter_config"] = get_graph_rewriter_config_from_file( graph_rewriter_config_path) return configs
def test_get_configs_from_multiple_files(self): """Tests that proto configs can be read from multiple files.""" temp_dir = self.get_temp_dir() # Write model config file. model_config_path = os.path.join(temp_dir, "model.config") model = model_pb2.DetectionModel() model.faster_rcnn.num_classes = 10 _write_config(model, model_config_path) # Write train config file. train_config_path = os.path.join(temp_dir, "train.config") train_config = train_config = train_pb2.TrainConfig() train_config.batch_size = 32 _write_config(train_config, train_config_path) # Write train input config file. train_input_config_path = os.path.join(temp_dir, "train_input.config") train_input_config = input_reader_pb2.InputReader() train_input_config.label_map_path = "path/to/label_map" _write_config(train_input_config, train_input_config_path) # Write eval config file. eval_config_path = os.path.join(temp_dir, "eval.config") eval_config = eval_pb2.EvalConfig() eval_config.num_examples = 20 _write_config(eval_config, eval_config_path) # Write eval input config file. eval_input_config_path = os.path.join(temp_dir, "eval_input.config") eval_input_config = input_reader_pb2.InputReader() eval_input_config.label_map_path = "path/to/another/label_map" _write_config(eval_input_config, eval_input_config_path) configs = config_util.get_configs_from_multiple_files( model_config_path=model_config_path, train_config_path=train_config_path, train_input_config_path=train_input_config_path, eval_config_path=eval_config_path, eval_input_config_path=eval_input_config_path) self.assertProtoEquals(model, configs["model"]) self.assertProtoEquals(train_config, configs["train_config"]) self.assertProtoEquals(train_input_config, configs["train_input_config"]) self.assertProtoEquals(eval_config, configs["eval_config"]) self.assertProtoEquals(eval_input_config, configs["eval_input_configs"][0])
def test_get_evaluator_with_no_evaluator_options(self): eval_config = eval_pb2.EvalConfig() eval_config.metrics_set.extend( ['coco_detection_metrics', 'precision_at_recall_detection_metrics']) eval_config.include_metrics_per_category = True eval_config.recall_lower_bound = 0.2 eval_config.recall_upper_bound = 0.6 categories = self._get_categories_list() evaluator = eval_util.get_evaluators( eval_config, categories, evaluator_options=None) # Even though we are setting eval_config.include_metrics_per_category = True # and bounds on recall, these options are never passed into the # DetectionEvaluator constructor (via `evaluator_options`). self.assertFalse(evaluator[0]._include_metrics_per_category) self.assertAlmostEqual(evaluator[1]._recall_lower_bound, 0.0) self.assertAlmostEqual(evaluator[1]._recall_upper_bound, 1.0)
def test_get_evaluator_with_evaluator_options(self): eval_config = eval_pb2.EvalConfig() eval_config.metrics_set.extend( ['coco_detection_metrics', 'precision_at_recall_detection_metrics']) eval_config.include_metrics_per_category = True eval_config.recall_lower_bound = 0.2 eval_config.recall_upper_bound = 0.6 categories = self._get_categories_list() evaluator_options = eval_util.evaluator_options_from_eval_config( eval_config) evaluator = eval_util.get_evaluators(eval_config, categories, evaluator_options) self.assertTrue(evaluator[0]._include_metrics_per_category) self.assertAlmostEqual(evaluator[1]._recall_lower_bound, eval_config.recall_lower_bound) self.assertAlmostEqual(evaluator[1]._recall_upper_bound, eval_config.recall_upper_bound)
def test_get_eval_metric_ops_for_coco_detections(self, batch_size=1, max_gt_boxes=None, scale_to_absolute=False): eval_config = eval_pb2.EvalConfig() eval_config.metrics_set.extend(['coco_detection_metrics']) categories = self._get_categories_list() eval_dict = self._make_evaluation_dict(batch_size=batch_size, max_gt_boxes=max_gt_boxes, scale_to_absolute=scale_to_absolute) metric_ops = eval_util.get_eval_metric_ops_for_evaluators( eval_config, categories, eval_dict) _, update_op = metric_ops['DetectionBoxes_Precision/mAP'] with self.test_session() as sess: metrics = {} for key, (value_op, _) in six.iteritems(metric_ops): metrics[key] = value_op sess.run(update_op) metrics = sess.run(metrics) self.assertAlmostEqual(1.0, metrics['DetectionBoxes_Precision/mAP']) self.assertNotIn('DetectionMasks_Precision/mAP', metrics)
def test_get_eval_metric_ops_for_evaluators(self): eval_config = eval_pb2.EvalConfig() eval_config.metrics_set.extend([ 'coco_detection_metrics', 'coco_mask_metrics', 'precision_at_recall_detection_metrics' ]) eval_config.include_metrics_per_category = True eval_config.recall_lower_bound = 0.2 eval_config.recall_upper_bound = 0.6 evaluator_options = eval_util.evaluator_options_from_eval_config( eval_config) self.assertTrue(evaluator_options['coco_detection_metrics'] ['include_metrics_per_category']) self.assertTrue( evaluator_options['coco_mask_metrics']['include_metrics_per_category']) self.assertAlmostEqual( evaluator_options['precision_at_recall_detection_metrics'] ['recall_lower_bound'], eval_config.recall_lower_bound) self.assertAlmostEqual( evaluator_options['precision_at_recall_detection_metrics'] ['recall_upper_bound'], eval_config.recall_upper_bound)