示例#1
0
def navchart():
    data = generatenav()
    navchart = data[["NAV_fx"]]
    # dates need to be in Epoch time for Highcharts
    navchart.index = (navchart.index - datetime(1970, 1, 1)).total_seconds()
    navchart.index = navchart.index * 1000
    navchart.index = navchart.index.astype(np.int64)
    navchart = navchart.to_dict()
    navchart = navchart["NAV_fx"]

    port_value_chart = data[[
        "PORT_cash_value_fx", "PORT_fx_pos", "PORT_ac_CFs_fx"
    ]]
    port_value_chart["ac_pnl_fx"] = (port_value_chart["PORT_fx_pos"] -
                                     port_value_chart["PORT_ac_CFs_fx"])
    # dates need to be in Epoch time for Highcharts
    port_value_chart.index = (port_value_chart.index -
                              datetime(1970, 1, 1)).total_seconds()
    port_value_chart.index = port_value_chart.index * 1000
    port_value_chart.index = port_value_chart.index.astype(np.int64)
    port_value_chart = port_value_chart.to_dict()

    return render_template("warden/warden_navchart.html",
                           title="NAV Historical Chart",
                           navchart=navchart,
                           port_value_chart=port_value_chart,
                           fx=FX,
                           current_user=fx_rate(),
                           donated=donate_check())
示例#2
0
def navchartdatajson():
    data = generatenav()
    # Generate data for NAV chart
    navchart = data[["NAV_fx"]]
    # dates need to be in Epoch time for Highcharts
    navchart.index = (navchart.index - datetime(1970, 1, 1)).total_seconds()
    navchart.index = navchart.index * 1000
    navchart.index = navchart.index.astype(np.int64)
    navchart = navchart.to_dict()
    navchart = navchart["NAV_fx"]
    # Sort for HighCharts
    import collections
    navchart = collections.OrderedDict(sorted(navchart.items()))
    navchart = json.dumps(navchart)
    return navchart
示例#3
0
def stackchartdatajson():
    data = generatenav()
    # Generate data for Stack chart
    # Filter to Only BTC Positions
    try:
        data['BTC_cum'] = data['BTC_quant'].cumsum()
        stackchart = data[["BTC_cum"]]
        # dates need to be in Epoch time for Highcharts
        stackchart.index = (stackchart.index -
                            datetime(1970, 1, 1)).total_seconds()
        stackchart.index = stackchart.index * 1000
        stackchart.index = stackchart.index.astype(np.int64)
        stackchart = stackchart.to_dict()
        stackchart = stackchart["BTC_cum"]
        # Sort for HighCharts
        import collections
        stackchart = collections.OrderedDict(sorted(stackchart.items()))
        stackchart = json.dumps(stackchart)
    except Exception as e:
        return (json.dumps({"Error": str(e)}))
    return stackchart
示例#4
0
def portstats():
    meta = {}
    # Looking to generate the following data here and return as JSON
    # for AJAX query on front page:
    # Start date, End Date, Start NAV, End NAV, Returns (1d, 1wk, 1mo, 1yr,
    # YTD), average daily return. Best day, worse day. Std dev of daily ret,
    # Higher NAV, Lower NAV + dates. Higher Port Value (date).
    data = generatenav()
    meta["start_date"] = (data.index.min()).date().strftime("%B %d, %Y")
    meta["end_date"] = data.index.max().date().strftime("%B %d, %Y")
    meta["start_nav"] = data["NAV_fx"][0]
    meta["end_nav"] = data["NAV_fx"][-1].astype(float)
    meta["max_nav"] = data["NAV_fx"].max().astype(float)
    meta["max_nav_date"] = data[
        data["NAV_fx"] == data["NAV_fx"].max()].index.strftime("%B %d, %Y")[0]
    meta["min_nav"] = data["NAV_fx"].min().astype(float)
    meta["min_nav_date"] = data[
        data["NAV_fx"] == data["NAV_fx"].min()].index.strftime("%B %d, %Y")[0]
    meta["end_portvalue"] = data["PORT_fx_pos"][-1].astype(float)
    meta["end_portvalue_usd"] = meta["end_portvalue"] / fx_rate()['fx_rate']
    meta["max_portvalue"] = data["PORT_fx_pos"].max().astype(float)
    meta["max_port_date"] = data[data["PORT_fx_pos"] == data["PORT_fx_pos"].
                                 max()].index.strftime("%B %d, %Y")[0]
    meta["min_portvalue"] = round(data["PORT_fx_pos"].min(), 0)
    meta["min_port_date"] = data[data["PORT_fx_pos"] == data["PORT_fx_pos"].
                                 min()].index.strftime("%B %d, %Y")[0]
    meta["return_SI"] = (meta["end_nav"] / meta["start_nav"]) - 1
    # Temporary fix for an issue with portfolios that are just too new
    # Create a function to handle this
    try:
        meta["return_1d"] = (meta["end_nav"] / data["NAV_fx"][-2]) - 1
    except IndexError:
        meta["return_1d"] = "-"

    try:
        meta["return_1wk"] = (meta["end_nav"] / data["NAV_fx"][-7]) - 1
    except IndexError:
        meta["return_1wk"] = "-"

    try:
        meta["return_30d"] = (meta["end_nav"] / data["NAV_fx"][-30]) - 1
    except IndexError:
        meta["return_30d"] = "-"

    try:
        meta["return_90d"] = (meta["end_nav"] / data["NAV_fx"][-90]) - 1
    except IndexError:
        meta["return_90d"] = "-"

    try:
        meta["return_ATH"] = (meta["end_nav"] / meta["max_nav"]) - 1
    except IndexError:
        meta["return_ATH"] = "-"

    try:
        yr_ago = pd.to_datetime(datetime.today() - relativedelta(years=1))
        yr_ago_NAV = data.NAV_fx[data.index.get_loc(yr_ago, method="nearest")]
        meta["return_1yr"] = meta["end_nav"] / yr_ago_NAV - 1
    except IndexError:
        meta["return_1yr"] = "-"

    # Create data for summa"age
    meta["fx"] = FX
    meta["daily"] = {}
    for days in range(1, 8):
        meta["daily"][days] = {}
        meta["daily"][days]["date"] = data.index[days * -1].date().strftime(
            "%A <br> %m/%d")
        meta["daily"][days]["nav"] = data["NAV_fx"][days * -1]
        meta["daily"][days]["nav_prev"] = data["NAV_fx"][(days + 1) * -1]
        meta["daily"][days]["perc_chg"] = (meta["daily"][days]["nav"] /
                                           meta["daily"][days]["nav_prev"]) - 1
        meta["daily"][days]["port"] = data["PORT_fx_pos"][days * -1]
        meta["daily"][days]["port_prev"] = data["PORT_fx_pos"][(days + 1) * -1]
        meta["daily"][days]["port_chg"] = (meta["daily"][days]["port"] -
                                           meta["daily"][days]["port_prev"])

    # Removes Numpy type from json - returns int instead
    def convert(o):
        if isinstance(o, np.int64):
            return int(o)
        else:
            return (o)

    # create chart data for a small NAV chart
    return simplejson.dumps(meta, ignore_nan=True, default=convert)