示例#1
0
def Download_SSEBop_from_WA_FTP(local_filename, Filename_dir):
    """
    This function retrieves SSEBop data for a given date from the
    ftp.wateraccounting.unesco-ihe.org server.

    Restrictions:
    The data and this python file may not be distributed to others without
    permission of the WA+ team due data restriction of the SSEBop developers.

    Keyword arguments:
	 local_filename -- name of the temporary file which contains global SSEBop data
    Filename_dir -- name of the end file with the monthly SSEBop data
    """

    # Collect account and FTP information
    username, password = WebAccounts.Accounts(Type='FTP_WA')
    ftpserver = "ftp.wateraccounting.unesco-ihe.org"

    # Download data from FTP
    ftp = FTP(ftpserver)
    ftp.login(username, password)
    directory = "/WaterAccounting/Data_Satellite/Evaporation/SSEBop/sourcefiles/"
    ftp.cwd(directory)
    lf = open(local_filename, "wb")
    ftp.retrbinary("RETR " + Filename_dir, lf.write)
    lf.close()

    return
示例#2
0
def Download_HiHydroSoil_from_WA_FTP(local_filename, Filename_in):
    """
    This function retrieves HiHydroSoil data for a given date from the
    ftp.wateraccounting.unesco-ihe.org server.

    Restrictions:
    The data and this python file may not be distributed to others without
    permission of the WA+ team due data restriction of the HiHydroSoil developers.

    Keyword arguments:
	 local_filename -- name of the temporary file which contains global HiHydroSoil data
    Filename_in -- name of the end file with the HiHydroSoil data
    """

    # Collect account and FTP information
    username, password = WebAccounts.Accounts(Type='FTP_WA')
    ftpserver = "ftp.wateraccounting.unesco-ihe.org"

    # Download data from FTP
    ftp = FTP(ftpserver)
    ftp.login(username, password)
    directory = "/WaterAccounting_Guest/Static_WA_Datasets/"
    ftp.cwd(directory)
    lf = open(local_filename, "wb")
    ftp.retrbinary("RETR " + Filename_in, lf.write)
    lf.close()

    return
示例#3
0
def Download_ETmonitor_from_WA_FTP(local_filename, Filename_in, Type):
    """
    This function retrieves ETmonitor data for a given date from the
    ftp.wateraccounting.unesco-ihe.org server.

    Restrictions:
    The data and this python file may not be distributed to others without
    permission of the WA+ team due data restriction of the ETmonitor developers.

    Keyword arguments:
	 local_filename -- name of the temporary file which contains global ETmonitor data
    Filename_in -- name of the end file with the weekly ETmonitor data
	 Type = Type of data ("act" or "pot")
    """

    # Collect account and FTP information
    username, password = WebAccounts.Accounts(Type='FTP_WA')
    ftpserver = "ftp.wateraccounting.unesco-ihe.org"

    # Download data from FTP
    ftp = FTP(ftpserver)
    ftp.login(username, password)
    if Type == "pot":
        directory = "/WaterAccounting/Data_Satellite/Evaporation/ETmonitor/Potential_Evapotranspiration/"
    else:
        directory = "/WaterAccounting/Data_Satellite/Evaporation/ETmonitor/Global/"
    ftp.cwd(directory)
    lf = open(local_filename, "wb")
    ftp.retrbinary("RETR " + Filename_in, lf.write)
    lf.close()

    return
示例#4
0
def Download_ALEXI_from_WA_FTP(local_filename, DirFile, filename, lonlim,
                               latlim, yID, xID, TimeStep):
    """
    This function retrieves ALEXI data for a given date from the
    ftp.wateraccounting.unesco-ihe.org server.

    Restrictions:
    The data and this python file may not be distributed to others without
    permission of the WA+ team due data restriction of the ALEXI developers.

    Keyword arguments:
	local_filename -- name of the temporary file which contains global ALEXI data
    DirFile -- name of the end file with the weekly ALEXI data
    filename -- name of the end file
    lonlim -- [ymin, ymax] (values must be between -60 and 70)
    latlim -- [xmin, xmax] (values must be between -180 and 180)
    """

    # Collect account and FTP information
    username, password = WebAccounts.Accounts(Type='FTP_WA')
    ftpserver = "ftp.wateraccounting.unesco-ihe.org"

    # Download data from FTP
    ftp = FTP(ftpserver)
    ftp.login(username, password)
    if TimeStep is "weekly":
        directory = "/WaterAccounting/Data_Satellite/Evaporation/ALEXI/World/"
    if TimeStep is "daily":
        directory = "/WaterAccounting/Data_Satellite/Evaporation/ALEXI/World_05182018/"
    ftp.cwd(directory)
    lf = open(local_filename, "wb")
    ftp.retrbinary("RETR " + filename, lf.write)
    lf.close()

    if TimeStep is "weekly":

        # Open global ALEXI data
        dataset = RC.Open_tiff_array(local_filename)

        # Clip extend out of world data
        data = dataset[yID[0]:yID[1], xID[0]:xID[1]]
        data[data < 0] = -9999

    if TimeStep is "daily":

        DC.Extract_Data_gz(local_filename, os.path.splitext(local_filename)[0])

        raw_data = np.fromfile(os.path.splitext(local_filename)[0],
                               dtype="<f4")
        dataset = np.flipud(np.resize(raw_data, [3000, 7200]))
        data = dataset[
            yID[0]:yID[1],
            xID[0]:xID[1]] / 2.45  # Values are in MJ/m2d so convert to mm/d
        data[data < 0] = -9999

    # make geotiff file
    geo = [lonlim[0], 0.05, 0, latlim[1], 0, -0.05]
    DC.Save_as_tiff(name=DirFile, data=data, geo=geo, projection="WGS84")
    return
示例#5
0
def Download_ASCAT_from_VITO(End_filename, output_folder_temp, Date, yID, xID):
    """
    This function retrieves ALEXI data for a given date from the
    ftp.wateraccounting.unesco-ihe.org server.

    Restrictions:
    The data and this python file may not be distributed to others without
    permission of the WA+ team due data restriction of the ALEXI developers.

    Keyword arguments:

    """

    # Define date
    year_data = Date.year
    month_data = Date.month
    day_data = Date.day

    # filename of ASCAT data on server
    ASCAT_date = "%d%02d%02d0000" % (year_data, month_data, day_data)
    ASCAT_name = 'SWI_%s_GLOBE_ASCAT_V3.0' % ASCAT_date
    ASCAT_filename = "g2_BIOPAR_SWI_%s_GLOBE_ASCAT_V3.0.1.zip" % ASCAT_date

    # Collect account and FTP information
    username, password = WebAccounts.Accounts(Type='VITO')
    URL = "https://land.copernicus.vgt.vito.be/PDF/datapool/Vegetation/Soil_Water/SWI_V3/%s/%s/%s/%s/%s" % (
        year_data, month_data, day_data, ASCAT_name, ASCAT_filename)

    # Output zipfile
    output_zipfile_ASCAT = os.path.join(output_folder_temp, ASCAT_filename)

    # Download the ASCAT data
    try:
        y = requests.get(URL, auth=HTTPBasicAuth(username, password))
    except:
        from requests.packages.urllib3.exceptions import InsecureRequestWarning
        requests.packages.urllib3.disable_warnings(InsecureRequestWarning)

        y = requests.get(URL, auth=(username, password), verify=False)

    # Write the file in system
    z = open(output_zipfile_ASCAT, 'wb')
    z.write(y.content)
    z.close()

    # Extract the zipfile
    DC.Extract_Data(output_zipfile_ASCAT, output_folder_temp)

    # Open the file
    f = h5py.File(output_zipfile_ASCAT.replace('.zip', '.h5'))

    # Open global ASCAT data
    dataset = np.array((f['SWI']['SWI_010']).value)

    # Clip extend out of world data
    data = dataset[yID[0]:yID[1], xID[0]:xID[1]].astype("float") * 0.5
    data[data > 100] = -9999

    return (data)
示例#6
0
def Collect_data(FTPprefix, Years, output_folder, Waitbar, Product):
    '''
    This function downloads all the needed GLEAM files from hydras.ugent.be as a nc file.

    Keywords arguments:
    FTPprefix -- FTP path to the GLEAM data
    Date -- 'yyyy-mm-dd'
    output_folder -- 'C:/file/to/path/'
    '''
    # account of the SFTP server (only password is missing)
    server = 'hydras.ugent.be'
    portnumber = 2225

    username, password = WebAccounts.Accounts(Type='GLEAM')

    # Create Waitbar
    print('\nDownload GLEAM data')
    if Waitbar == 1:
        import watools.Functions.Start.WaitbarConsole as WaitbarConsole
        total_amount2 = len(Years)
        amount2 = 0
        WaitbarConsole.printWaitBar(amount2,
                                    total_amount2,
                                    prefix='Progress:',
                                    suffix='Complete',
                                    length=50)

    for year in Years:
        directory = os.path.join(FTPprefix, '%d' % year)
        ssh = paramiko.SSHClient()
        ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())
        ssh.connect(server,
                    port=portnumber,
                    username=username,
                    password=password)
        ftp = ssh.open_sftp()
        ftp.chdir(directory)

        if Product == "ET":
            filename = 'E_' + str(year) + '_GLEAM_v3.2b.nc'
        if Product == "ETpot":
            filename = 'Ep_' + str(year) + '_GLEAM_v3.2b.nc'
        local_filename = os.path.join(output_folder, filename)

        if not os.path.exists(local_filename):
            ftp.get(filename, local_filename)

        if Waitbar == 1:
            amount2 += 1
            WaitbarConsole.printWaitBar(amount2,
                                        total_amount2,
                                        prefix='Progress:',
                                        suffix='Complete',
                                        length=50)

    ftp.close()
    ssh.close()

    return ()
示例#7
0
def Download_ASCAT_from_VITO(End_filename, output_folder_temp, Date, yID, xID):
    """
    This function retrieves ALEXI data for a given date from the
    ftp.wateraccounting.unesco-ihe.org server.

    Restrictions:
    The data and this python file may not be distributed to others without
    permission of the WA+ team due data restriction of the ALEXI developers.

    Keyword arguments:

    """

    # Define date
    year_data = Date.year
    month_data = Date.month
    day_data = Date.day

    # filename of ASCAT data on server
    ASCAT_date = "%d%02d%02d1200" % (year_data, month_data, day_data)
    ASCAT_name = 'SWI_%s_GLOBE_ASCAT_V3.1.1' % ASCAT_date
    ASCAT_filename = "c_gls_SWI_%s_GLOBE_ASCAT_V3.1.1.nc" % ASCAT_date

    # Collect account and FTP information
    username, password = WebAccounts.Accounts(Type='Copernicus')
    URL = "https://land.copernicus.vgt.vito.be/PDF/datapool/Vegetation/Soil_Water/SWI_V3/%s/%s/%s/%s/%s" % (
        year_data, month_data, day_data, ASCAT_name, ASCAT_filename)

    # Output zipfile
    output_ncfile_ASCAT = os.path.join(output_folder_temp, ASCAT_filename)

    # Download the ASCAT data
    try:
        y = requests.get(URL, auth=HTTPBasicAuth(username, password))
    except:
        from requests.packages.urllib3.exceptions import InsecureRequestWarning
        requests.packages.urllib3.disable_warnings(InsecureRequestWarning)

        y = requests.get(URL, auth=(username, password), verify=False)

    # Write the file in system
    z = open(output_ncfile_ASCAT, 'wb')
    z.write(y.content)
    z.close()

    # Open nc file
    fh = Dataset(output_ncfile_ASCAT)
    dataset = fh.variables['SWI_010'][:, yID[0]:yID[1], xID[0]:xID[1]]
    data = np.squeeze(dataset.data, axis=0)
    data = data * 0.5
    data[data > 100.] = -9999
    fh.close()

    return (data)
示例#8
0
def Download_GWF_from_WA_FTP(output_folder, filename_Out, lonlim, latlim):
    """
    This function retrieves GWF data for a given date from the
    ftp.wateraccounting.unesco-ihe.org server.

    Keyword arguments:
    output_folder -- name of the end file with the weekly ALEXI data
    End_filename -- name of the end file
    lonlim -- [ymin, ymax] (values must be between -60 and 70)
    latlim -- [xmin, xmax] (values must be between -180 and 180)
    """

    try:
        # Collect account and FTP information
        username, password = WebAccounts.Accounts(Type='FTP_WA')
        ftpserver = "ftp.wateraccounting.unesco-ihe.org"

        # Set the file names and directories
        filename = "Gray_Water_Footprint.tif"
        local_filename = os.path.join(output_folder, filename)

        # Download data from FTP
        ftp = FTP(ftpserver)
        ftp.login(username, password)
        directory = "/WaterAccounting_Guest/Static_WA_Datasets/"
        ftp.cwd(directory)
        lf = open(local_filename, "wb")
        ftp.retrbinary("RETR " + filename, lf.write)
        lf.close()

        # Clip extend out of world data
        dataset, Geo_out = RC.clip_data(local_filename, latlim, lonlim)

        # make geotiff file
        DC.Save_as_tiff(name=filename_Out,
                        data=dataset,
                        geo=Geo_out,
                        projection="WGS84")

        # delete old tif file
        os.remove(local_filename)

    except:
        print("file not exists")

    return
示例#9
0
def Download_ETens_from_WA_FTP(output_folder, Lat_tiles, Lon_tiles):
    """
    This function retrieves ETensV1.0 data for a given date from the
    ftp.wateraccounting.unesco-ihe.org server.

    Restrictions:
    The data and this python file may not be distributed to others without
    permission of the WA+ team.

    Keyword arguments:
    output_folder -- Directory of the outputs
    Lat_tiles -- [Lat_min, Lat_max] Tile number of the max and min latitude tile number
    Lon_tiles -- [Lon_min, Lon_max] Tile number of the max and min longitude tile number
    """
    for v_tile in range(Lat_tiles[0], Lat_tiles[1] + 1):
        for h_tile in range(Lon_tiles[0], Lon_tiles[1] + 1):

            Tilename = "h%sv%s.zip" % (h_tile, v_tile)
            if not os.path.exists(os.path.join(output_folder, Tilename)):
                try:
                    # Collect account and FTP information
                    username, password = WebAccounts.Accounts(Type='FTP_WA')
                    FTP_name = "ftp://ftp.wateraccounting.unesco-ihe.org//WaterAccounting_Guest/ETensV1.0/%s" % Tilename
                    local_filename = os.path.join(output_folder, Tilename)

                    # Download data from FTP
                    curl = pycurl.Curl()
                    curl.setopt(pycurl.URL, FTP_name)
                    curl.setopt(pycurl.USERPWD, '%s:%s' % (username, password))
                    fp = open(local_filename, "wb")
                    curl.setopt(pycurl.WRITEDATA, fp)
                    curl.perform()
                    curl.close()
                    fp.close()

                except:
                    print(
                        "tile %s is not found and will be replaced by NaN values"
                        % Tilename)

    return ()
示例#10
0
def Collect_data(TilesHorizontal, TilesVertical, Date, output_folder, TimeStep,
                 hdf_library):
    '''
    This function downloads all the needed MODIS tiles from http://e4ftl01.cr.usgs.gov/MOLT/MOD13Q1.006/ as a hdf file.

    Keywords arguments:
    TilesHorizontal -- [TileMin,TileMax] max and min horizontal tile number
    TilesVertical -- [TileMin,TileMax] max and min vertical tile number
    Date -- 'yyyy-mm-dd'
    output_folder -- 'C:/file/to/path/'
    '''

    # Make a new tile for the data
    sizeX = int((TilesHorizontal[1] - TilesHorizontal[0] + 1) * 1200)
    sizeY = int((TilesVertical[1] - TilesVertical[0] + 1) * 1200)
    DataTot = np.zeros((sizeY, sizeX))

    # Load accounts
    username, password = WebAccounts.Accounts(Type='NASA')

    # Create the Lat and Long of the MODIS tile in meters
    for Vertical in range(int(TilesVertical[0]), int(TilesVertical[1]) + 1):
        Distance = 4 * 231.65635826395834  # resolution of a MODIS pixel in meter
        countY = (TilesVertical[1] - TilesVertical[0] + 1) - (Vertical -
                                                              TilesVertical[0])

        for Horizontal in range(int(TilesHorizontal[0]),
                                int(TilesHorizontal[1]) + 1):
            countX = Horizontal - TilesHorizontal[0] + 1

            # Download the MODIS NDVI data
            if TimeStep == 8:
                url = 'https://e4ftl01.cr.usgs.gov/MOLT/MOD11A2.006/' + Date.strftime(
                    '%Y') + '.' + Date.strftime('%m') + '.' + Date.strftime(
                        '%d') + '/'
            if TimeStep == 1:
                url = 'https://e4ftl01.cr.usgs.gov/MOLT/MOD11A1.006/' + Date.strftime(
                    '%Y') + '.' + Date.strftime('%m') + '.' + Date.strftime(
                        '%d') + '/'

# Reset the begin parameters for downloading
            downloaded = 0
            N = 0

            # Check the library given by user
            if hdf_library is not None:
                os.chdir(hdf_library)
                if TimeStep == 8:
                    hdf_name = glob.glob(
                        "MOD11A2.A%s%03s.h%02dv%02d.*" %
                        (Date.strftime('%Y'), Date.strftime('%j'), Horizontal,
                         Vertical))
                if TimeStep == 1:
                    hdf_name = glob.glob(
                        "MOD11A1.A%s%03s.h%02dv%02d.*" %
                        (Date.strftime('%Y'), Date.strftime('%j'), Horizontal,
                         Vertical))

                if len(hdf_name) == 1:
                    hdf_file = os.path.join(hdf_library, hdf_name[0])

                    if os.path.exists(hdf_file):
                        downloaded = 1
                        file_name = hdf_file

            if not downloaded == 1:

                # Get files on FTP server
                if sys.version_info[0] == 3:
                    f = urllib.request.urlopen(url)

                if sys.version_info[0] == 2:
                    f = urllib.request.urlopen(url)

                # Sum all the files on the server
                soup = BeautifulSoup(f, "lxml")
                for i in soup.findAll('a',
                                      attrs={'href':
                                             re.compile('(?i)(hdf)$')}):

                    # Find the file with the wanted tile number
                    Vfile = str(i)[30:32]
                    Hfile = str(i)[27:29]
                    if int(Vfile) is int(Vertical) and int(Hfile) is int(
                            Horizontal):

                        # Define the whole url name
                        if sys.version_info[0] == 3:
                            full_url = urllib.parse.urljoin(url, i['href'])

                        if sys.version_info[0] == 2:
                            full_url = urllib.parse.urljoin(url, i['href'])

                        # if not downloaded try to download file
                        while downloaded == 0:

                            try:  # open http and download whole .hdf
                                nameDownload = full_url
                                file_name = os.path.join(
                                    output_folder,
                                    nameDownload.split('/')[-1])
                                if os.path.isfile(file_name):
                                    print(("file ", file_name,
                                           " already exists"))
                                    downloaded = 1
                                else:
                                    x = requests.get(nameDownload,
                                                     allow_redirects=False)
                                    try:
                                        y = requests.get(x.headers['location'],
                                                         auth=(username,
                                                               password))
                                    except:
                                        from requests.packages.urllib3.exceptions import InsecureRequestWarning
                                        requests.packages.urllib3.disable_warnings(
                                            InsecureRequestWarning)

                                        y = requests.get(x.headers['location'],
                                                         auth=(username,
                                                               password),
                                                         verify=False)
                                    z = open(file_name, 'wb')
                                    z.write(y.content)
                                    z.close()
                                    statinfo = os.stat(file_name)
                                    # Say that download was succesfull
                                    if int(statinfo.st_size) > 10000:
                                        downloaded = 1

                            # If download was not succesfull
                            except:

                                # Try another time
                                N = N + 1

    # Stop trying after 10 times
                        if N == 10:
                            print('Data from ' + Date.strftime('%Y-%m-%d') +
                                  ' is not available')
                            downloaded = 1
            try:
                # Open .hdf only band with NDVI and collect all tiles to one array
                dataset = gdal.Open(file_name)
                sdsdict = dataset.GetMetadata('SUBDATASETS')
                sdslist = [
                    sdsdict[k] for k in list(sdsdict.keys()) if '_1_NAME' in k
                ]
                sds = []

                for n in sdslist:
                    sds.append(gdal.Open(n))
                    full_layer = [i for i in sdslist if 'LST_Day_1km' in i]
                    idx = sdslist.index(full_layer[0])
                    if Horizontal == TilesHorizontal[
                            0] and Vertical == TilesVertical[0]:
                        geo_t = sds[idx].GetGeoTransform()

                        # get the projection value
                        proj = sds[idx].GetProjection()

                    data = sds[idx].ReadAsArray()
                    countYdata = (TilesVertical[1] - TilesVertical[0] +
                                  2) - countY
                    DataTot[int((countYdata - 1) * 1200):int(countYdata *
                                                             1200),
                            int((countX - 1) * 1200):int(countX *
                                                         1200)] = data * 0.02
                del data

            # if the tile not exists or cannot be opened, create a nan array with the right projection
            except:
                if Horizontal == TilesHorizontal[
                        0] and Vertical == TilesVertical[0]:
                    x1 = (TilesHorizontal[0] - 19) * 1200 * Distance
                    x4 = (TilesVertical[0] - 9) * 1200 * -1 * Distance
                    geo = [x1, Distance, 0.0, x4, 0.0, -Distance]
                    geo_t = tuple(geo)

                proj = 'PROJCS["unnamed",GEOGCS["Unknown datum based upon the custom spheroid",DATUM["Not specified (based on custom spheroid)",SPHEROID["Custom spheroid",6371007.181,0]],PRIMEM["Greenwich",0],UNIT["degree",0.0174532925199433]],PROJECTION["Sinusoidal"],PARAMETER["longitude_of_center",0],PARAMETER["false_easting",0],PARAMETER["false_northing",0],UNIT["Meter",1]]'
                data = np.ones((1200, 1200)) * (-9999 / 0.02)
                countYdata = (TilesVertical[1] - TilesVertical[0] + 2) - countY
                DataTot[(countYdata - 1) * 1200:countYdata * 1200,
                        (countX - 1) * 1200:countX * 4800] = data * 0.02
                DataTot[DataTot < 1] = -9999

    # Make geotiff file
    name2 = os.path.join(output_folder, 'Merged.tif')
    driver = gdal.GetDriverByName("GTiff")
    dst_ds = driver.Create(name2, DataTot.shape[1], DataTot.shape[0], 1,
                           gdal.GDT_Float32, ['COMPRESS=LZW'])
    try:
        dst_ds.SetProjection(proj)
    except:
        proj = 'PROJCS["unnamed",GEOGCS["Unknown datum based upon the custom spheroid",DATUM["Not specified (based on custom spheroid)",SPHEROID["Custom spheroid",6371007.181,0]],PRIMEM["Greenwich",0],UNIT["degree",0.0174532925199433]],PROJECTION["Sinusoidal"],PARAMETER["longitude_of_center",0],PARAMETER["false_easting",0],PARAMETER["false_northing",0],UNIT["Meter",1]]'
        x1 = (TilesHorizontal[0] - 18) * 1200 * Distance
        x4 = (TilesVertical[0] - 9) * 1200 * -1 * Distance
        geo = [x1, Distance, 0.0, x4, 0.0, -Distance]
        geo_t = tuple(geo)
        dst_ds.SetProjection(proj)

    dst_ds.GetRasterBand(1).SetNoDataValue(-9999)
    dst_ds.SetGeoTransform(geo_t)
    dst_ds.GetRasterBand(1).WriteArray(DataTot)
    dst_ds = None
    sds = None
    return ()
示例#11
0
def DownloadData(Dir, Startdate, Enddate, latlim, lonlim, Waitbar, cores,
                 TimeCase):
    """
    This function downloads MSWEP Version 2.1 daily or monthly data

    Keyword arguments:
    Dir -- 'C:/file/to/path/'
    Var -- 'wind_f_inst' : (string) For all variable codes: VariablesInfo('day').descriptions.keys()
    Startdate -- 'yyyy-mm-dd'
    Enddate -- 'yyyy-mm-dd'
    latlim -- [ymin, ymax]
    lonlim -- [xmin, xmax]
    Waitbar -- 0 or 1 (1 is waitbar on)
    cores -- 1....8
    """

    # Load factors / unit / type of variables / accounts
    username, password = WebAccounts.Accounts(Type='MSWEP')

    # Set required data for the daily option
    if TimeCase == 'daily':

        # Define output folder and create this one if not exists
        path = os.path.join(Dir, 'Precipitation', 'MSWEP', 'daily')

        if not os.path.exists(path):
            os.makedirs(path)

        # Startdate if not defined
        sd_date = '1979-01-01'

        # Define Time frequency
        TimeFreq = 'D'

        # Define URL by using personal account
        url = 'https://%s:%[email protected]/opendap/MSWEP_V2.1/global_daily_010deg/' % (
            username, password)

        # Name the definition that will be used to obtain the data
        RetrieveData_fcn = RetrieveData_daily

    # Set required data for the monthly option
    elif TimeCase == 'monthly':

        # Define output folder and create this one if not exists
        path = os.path.join(Dir, 'Precipitation', 'MSWEP', 'monthly')

        if not os.path.exists(path):
            os.makedirs(path)

        # Startdate if not defined
        sd_date = '1979-01-01'

        # Define Time frequency
        TimeFreq = 'MS'

        # Define URL by using personal account
        url = 'https://%s:%[email protected]:443/opendap/MSWEP_V2.1/global_monthly_010deg.nc' % (
            username, password)

        # Name the definition that will be used to obtain the data
        RetrieveData_fcn = RetrieveData_monthly

    # If none of the possible option are chosen
    else:
        raise KeyError("The input time interval is not supported")

    # Define IDs (latitude/longitude)
    yID = np.int16(
        np.array(
            [np.ceil((latlim[0] + 90) * 10),
             np.floor((latlim[1] + 90) * 10)]))
    xID = np.int16(
        np.array([
            np.floor((lonlim[0] + 180) * 10),
            np.ceil((lonlim[1] + 180) * 10)
        ]))

    # Check dates. If no dates are given, the max number of days is used.
    if not Startdate:
        Startdate = pd.Timestamp(sd_date)
    if not Enddate:
        Enddate = pd.Timestamp('Now')  # Should be much than available

    # Create all dates that will be calculated
    Dates = pd.date_range(Startdate, Enddate, freq=TimeFreq)

    # Create Waitbar
    if Waitbar == 1:
        import watools.Functions.Start.WaitbarConsole as WaitbarConsole
        total_amount = len(Dates)
        amount = 0
        WaitbarConsole.printWaitBar(amount,
                                    total_amount,
                                    prefix='Progress:',
                                    suffix='Complete',
                                    length=50)

    # Create one parameter with all the required arguments
    args = [path, url, TimeCase, xID, yID, lonlim, latlim, username, password]

    # Pass variables to parallel function and run
    if not cores:
        for Date in Dates:
            RetrieveData_fcn(Date, args)
            if Waitbar == 1:
                amount += 1
                WaitbarConsole.printWaitBar(amount,
                                            total_amount,
                                            prefix='Progress:',
                                            suffix='Complete',
                                            length=50)
        results = True
    else:
        results = Parallel(n_jobs=cores)(delayed(RetrieveData_fcn)(Date, args)
                                         for Date in Dates)
    return results
示例#12
0
def DownloadData(Dir, Var, Startdate, Enddate, latlim, lonlim, Waitbar, CaseParameters, cores, TimeCase):
    """
    This function downloads GLDAS CLSM daily data

    Keyword arguments:
    Dir -- 'C:/file/to/path/'
    Var -- 'wind_f_inst' : (string) For all variable codes: VariablesInfo('day').descriptions.keys()
    Startdate -- 'yyyy-mm-dd'
    Enddate -- 'yyyy-mm-dd'
    latlim -- [ymin, ymax]
    lonlim -- [xmin, xmax]
    cores -- 1....8
    CaseParameters -- See files: three_hourly.py, daily.py, and monthly.py
    """

    # Load factors / unit / type of variables / accounts
    VarInfo = VariablesInfo(TimeCase)
    username, password = WebAccounts.Accounts(Type = 'NASA')

	# Set required data for the daily option
    # Set required data for the three hourly option
    if TimeCase == 'three_hourly':

        # Define output folder and create this one if not exists
        path = os.path.join(Dir, 'Weather_Data', 'Model', 'GLDAS',
                            TimeCase, Var)

        if not os.path.exists(path):
            os.makedirs(path)

        # Startdate if not defined
        sd_date = '1979-01-02'

        # Define Time frequency
        TimeFreq = 'D'

        # Define URL by using personal account
        #url = 'http://%s:%[email protected]:80/dods/GLDAS_NOAH025SUBP_3H' %(username,password)
        url = 'https://hydro1.gesdisc.eosdis.nasa.gov/dods/GLDAS_CLM10SUBP_3H'  #%(username,password)

        # Name the definition that will be used to obtain the data
        RetrieveData_fcn = RetrieveData_three_hourly

        types = ['mean']

    elif TimeCase == 'daily':

        types = ['mean']

        # Define output folder and create this one if not exists
        path = {'mean': os.path.join(Dir, 'Weather_Data', 'Model', 'GLDAS_CLSM',
                                     TimeCase, Var, 'mean')}
        for i in range(len(types)):
            if not os.path.exists(path[types[i]]):
                os.makedirs(path[types[i]])

        # Startdate if not defined
        sd_date = '1948-01-01'

        # Define Time frequency
        TimeFreq = 'D'

        # Define URL by using personal account
        url = 'https://hydro1.gesdisc.eosdis.nasa.gov/dods/GLDAS_CLSM025_D.2.0'

        # Name the definition that will be used to obtain the data
        RetrieveData_fcn = RetrieveData_daily

    # Set required data for the monthly option
    elif TimeCase == 'monthly':

        types = ['mean']

        # Define output folder and create this one if not exists
        path = {'mean': os.path.join(Dir, 'Weather_Data', 'Model', 'GLDAS_CLSM',
                                     TimeCase, Var, 'mean')}
        for i in range(len(types)):
            if not os.path.exists(path[types[i]]):
                os.makedirs(path[types[i]])

        # Startdate if not defined
        sd_date = '1979-01-02'

        # Define Time frequency
        TimeFreq = 'MS'

        # Define URL by using personal account
        url = 'https://hydro1.gesdisc.eosdis.nasa.gov/dods/GLDAS_CLSM025_D.2.0'

        # Name the definition that will be used to obtain the data
        RetrieveData_fcn = RetrieveData_monthly
    # If none of the possible option are chosen
    else:
        raise KeyError("The input time interval is not supported")

    if TimeCase == 'three_hourly':

        # Define IDs (latitude/longitude)
        yID = np.int16(np.array([np.ceil((latlim[0] + 60)),
                                 np.floor((latlim[1] + 60))]))
        xID = np.int16(np.array([np.floor((lonlim[0] + 180)),
                                 np.ceil((lonlim[1] + 180))]))
    else:

        # Define IDs (latitude/longitude)
        yID = np.int16(np.array([np.ceil((latlim[0] + 60) * 4),
                                 np.floor((latlim[1] + 60) * 4)]))
        xID = np.int16(np.array([np.floor((lonlim[0] + 180) * 4),
                                 np.ceil((lonlim[1] + 180) * 4)]))
    
    # Check dates. If no dates are given, the max number of days is used.
    if not Startdate:
        Startdate = pd.Timestamp(sd_date)
    if not Enddate:
        Enddate = pd.Timestamp('Now')  # Should be much than available

    # Create all dates that will be calculated
    Dates = pd.date_range(Startdate, Enddate, freq=TimeFreq)

    # Create Waitbar
    if Waitbar == 1:
        import watools.Functions.Start.WaitbarConsole as WaitbarConsole
        total_amount = len(Dates)
        amount = 0
        WaitbarConsole.printWaitBar(amount, total_amount, prefix = 'Progress:', suffix = 'Complete', length = 50)

    # Define the variable string name
    VarStr = VarInfo.names[Var]

    # Create one parameter with all the required arguments
    args = [path, url, Var, VarStr, VarInfo, TimeCase, xID, yID, lonlim, latlim, CaseParameters, username, password, types]

    # Pass variables to parallel function and run
    if not cores:
        for Date in Dates:
            RetrieveData_fcn(Date, args)
            if Waitbar == 1:
                amount += 1
                WaitbarConsole.printWaitBar(amount, total_amount, prefix = 'Progress:', suffix = 'Complete', length = 50)
        results = True
    else:
        results = Parallel(n_jobs=cores)(delayed(RetrieveData_fcn)(Date, args)
                                         for Date in Dates)
    return results
示例#13
0
def RetrieveData(Date, args):
    """
    This function retrieves TRMM data for a given date from the
    ftp://disc2.nascom.nasa.gov server.

    Keyword arguments:
    Date -- 'yyyy-mm-dd'
    args -- A list of parameters defined in the DownloadData function.
    """
    # Argument
    [output_folder, TimeCase, xID, yID, lonlim, latlim] = args

    year = Date.year
    month = Date.month
    day = Date.day

    from watools import WebAccounts
    username, password = WebAccounts.Accounts(Type='NASA')

    # Create https
    if TimeCase == 'daily':
        URL = 'https://gpm1.gesdisc.eosdis.nasa.gov/opendap/GPM_L3/GPM_3IMERGDF.05/%d/%02d/3B-DAY.MS.MRG.3IMERG.%d%02d%02d-S000000-E235959.V05.nc4.ascii?precipitationCal[%d:1:%d][%d:1:%d]' % (
            year, month, year, month, day, xID[0], xID[1] - 1, yID[0],
            yID[1] - 1)
        DirFile = os.path.join(
            output_folder, "P_TRMM3B42.V7_mm-day-1_daily_%d.%02d.%02d.tif" %
            (year, month, day))
        Scaling = 1

    if TimeCase == 'monthly':
        URL = 'https://gpm1.gesdisc.eosdis.nasa.gov/opendap/hyrax/GPM_L3/GPM_3IMERGM.05/%d/3B-MO.MS.MRG.3IMERG.%d%02d01-S000000-E235959.%02d.V05B.HDF5.ascii?precipitation[%d:1:%d][%d:1:%d]' % (
            year, year, month, month, xID[0], xID[1] - 1, yID[0], yID[1] - 1)
        Scaling = calendar.monthrange(year, month)[1] * 24
        DirFile = os.path.join(
            output_folder,
            "P_GPM.IMERG_mm-month-1_monthly_%d.%02d.01.tif" % (year, month))

    if not os.path.isfile(DirFile):
        dataset = requests.get(URL, allow_redirects=False, stream=True)
        try:
            get_dataset = requests.get(dataset.headers['location'],
                                       auth=(username, password),
                                       stream=True)
        except:
            from requests.packages.urllib3.exceptions import InsecureRequestWarning
            requests.packages.urllib3.disable_warnings(InsecureRequestWarning)
            get_dataset = requests.get(dataset.headers['location'],
                                       auth=(username, password),
                                       verify=False)

        # download data (first save as text file)
        pathtext = os.path.join(output_folder, 'temp.txt')
        z = open(pathtext, 'wb')
        z.write(get_dataset.content)
        z.close()

        # Open text file and remove header and footer
        data_start = np.genfromtxt(pathtext,
                                   dtype=float,
                                   skip_header=1,
                                   delimiter=',')
        data = data_start[:, 1:] * Scaling
        data[data < 0] = -9999
        data = data.transpose()
        data = np.flipud(data)

        # Delete .txt file
        os.remove(pathtext)

        # Make geotiff file
        geo = [lonlim[0], 0.1, 0, latlim[1], 0, -0.1]
        DC.Save_as_tiff(name=DirFile, data=data, geo=geo, projection="WGS84")

    return True
示例#14
0
def Collect_data(TilesHorizontal,TilesVertical,Date,output_folder,timestep, hdf_library, Size_pix):
    '''
    This function downloads all the needed MODIS tiles from ftp.ntsg.umt.edu/pub/MODIS/NTSG_Products/MOD16/MOD16A2_MONTHLY.MERRA_GMAO_1kmALB/ as a hdf file.

    Keywords arguments:
    TilesHorizontal -- [TileMin,TileMax] max and min horizontal tile number
    TilesVertical -- [TileMin,TileMax] max and min vertical tile number
    Date -- 'yyyy-mm-dd'
    output_folder -- 'C:/file/to/path/'
    '''

    # Make a new tile for the data
    sizeX=int(TilesHorizontal[1]-TilesHorizontal[0]+1)*1200 * Size_pix
    sizeY=int(TilesVertical[1]-TilesVertical[0]+1)*1200 * Size_pix
    DataTot=np.ones((sizeY,sizeX))* -9999

    # Make a new tile for the lat and long info
    LatMet=np.zeros((sizeY))
    LongMet=np.zeros((sizeX))

    # Create the Lat and Long of the MODIS tile in meters
    for Vertical in range(int(TilesVertical[0]),int(TilesVertical[1])+1):
        Distance=926.625 / Size_pix # resolution of a MODIS pixel in meter
        countY=int((TilesVertical[1]-TilesVertical[0]+1)-(Vertical-TilesVertical[0]))
        LatMet[int((countY-1)*1200 * Size_pix):int((countY)*1200 * Size_pix)]=np.linspace(((8-Vertical)*1200 * Size_pix+0.5)*Distance,((8-Vertical)*1200 * Size_pix + 1200 * Size_pix - 0.5)*Distance,1200 * Size_pix)

        for Horizontal in range(int(TilesHorizontal[0]),int(TilesHorizontal[1])+1):
            countX=int(Horizontal-TilesHorizontal[0]+1)
            LongMet[int((countX-1)*1200 * Size_pix):int((countX)*1200 * Size_pix)]=np.linspace(((Horizontal-18)*1200 * Size_pix+0.5)*Distance,((Horizontal-18)*1200+1200 * Size_pix - 0.5)*Distance,1200* Size_pix)

            # Set the download to zero again
            downloaded = 0

            if hdf_library is not None:
                os.chdir(hdf_library)
                hdf_name = glob.glob("MOD16A2.A%s%03s.h%02dv%02d.*" %(Date.strftime('%Y'), Date.strftime('%j'), Horizontal, Vertical))

                if len(hdf_name) == 1:
                    hdf_file = os.path.join(hdf_library, hdf_name[0])

                    if os.path.exists(hdf_file):
                        downloaded = 1
                        data = Open_mod16_data(hdf_file)
                        countYdata=(TilesVertical[1]-TilesVertical[0]+2)-countY
                        DataTot[(int(countYdata)-1)*1200 * Size_pix:int(countYdata)*1200 * Size_pix,(int(countX)-1)*1200* Size_pix:int(countX)*1200 * Size_pix]=data*0.1

            while downloaded == 0:

                # Download the MODIS FPAR data
                if timestep == 'monthly':
                    url = 'http://files.ntsg.umt.edu/data/NTSG_Products/MOD16/MOD16A2_MONTHLY.MERRA_GMAO_1kmALB/Y%s/M%02s/' %(Date.strftime('%Y'), Date.strftime('%m'))

                if timestep == '8-daily':
                    url = 'https://e4ftl01.cr.usgs.gov/MOLT/MOD16A2.006/%d.%02d.%02d/' %(Date.year, Date.month, Date.day)

                # Get files on FTP server
                if sys.version_info[0] == 3:
                    f = urllib.request.urlopen(url)

                if sys.version_info[0] == 2:
                    f = urllib2.urlopen(url)

                # Sum all the files on the server
                soup = BeautifulSoup(f, "lxml")

                try:
                    for i in soup.findAll('a', attrs = {'href': re.compile('(?i)(hdf)$')}):

                        # Find the file with the wanted tile number
                        nameHDF=str(i)
                        HDF_name = nameHDF.split('>')[-2][:-3]
                        Hfile=HDF_name[18:20]
                        Vfile=HDF_name[21:23]
                        if int(Vfile) is int(Vertical) and int(Hfile) is int(Horizontal):
                            
                            HTTP_name = url + HDF_name
                            output_name = os.path.join(output_folder, HDF_name)

                            if timestep == 'monthly':

                                if not os.path.isfile(output_name):
    
                                    while downloaded == 0:
    
                                        if sys.version_info[0] == 2:
                                            urllib.urlretrieve(HTTP_name,output_name)
                                        if sys.version_info[0] == 3:
                                            urllib.request.urlretrieve(HTTP_name,output_name)
    
                                        statinfo = os.stat(output_name)
                                        # Say that download was succesfull
                                        if int(statinfo.st_size) > 1000:
                                           downloaded = 1
                                           
                            if timestep == '8-daily':
                                            
            		                 # Reset the begin parameters for downloading
                                N=0
                                username, password = WebAccounts.Accounts(Type = 'NASA')
              
                                # if not downloaded try to download file
                                while downloaded == 0:
            
                                    try:# open http and download whole .hdf
                                        file_name = os.path.join(output_folder,HTTP_name.split('/')[-1])
                                        if os.path.isfile(output_name):
                                            downloaded = 1
                                        else:
                                            x = requests.get(HTTP_name, allow_redirects = False)
                                            try:
                                                y = requests.get(x.headers['location'], auth = (username, password))
                                            except:
                                                from requests.packages.urllib3.exceptions import InsecureRequestWarning
                                                requests.packages.urllib3.disable_warnings(InsecureRequestWarning)
            
                                                y = requests.get(x.headers['location'], auth = (username, password), verify = False)
  
                                            z = open(output_name, 'wb')
                                            z.write(y.content)
                                            z.close()
                                            statinfo = os.stat(file_name)
                                            # Say that download was succesfull
                                            if int(statinfo.st_size) > 1000:
                                                 downloaded = 1
            
                                    # If download was not succesfull
                                    except:
            
                                        # Try another time
                                        N = N + 1
            
            						      # Stop trying after 10 times
                                    if N == 10:
                                        print('Data from ' + Date.strftime('%Y-%m-%d') + ' is not available')
                                        downloaded = 1                                

                            # Open .hdf only band with ET and collect all tiles to one array
                            data = Open_mod16_data(output_name)
                            countYdata=(TilesVertical[1]-TilesVertical[0]+2)-countY
                            DataTot[(int(countYdata)-1)*1200 * Size_pix:int(countYdata)*1200 * Size_pix,(int(countX)-1)*1200* Size_pix:int(countX)*1200* Size_pix]=data*0.1
                            DataTot[DataTot>3000]=-9999
                            downloaded = 1
                            del data

                except:
                    proj='PROJCS["unnamed",GEOGCS["Unknown datum based upon the custom spheroid",DATUM["Not specified (based on custom spheroid)",SPHEROID["Custom spheroid",6371007.181,0]],PRIMEM["Greenwich",0],UNIT["degree",0.0174532925199433]],PROJECTION["Sinusoidal"],PARAMETER["longitude_of_center",0],PARAMETER["false_easting",0],PARAMETER["false_northing",0],UNIT["Meter",1]]'
                    data=np.ones((1200* Size_pix, 1200* Size_pix)) * (-9999)
                    countYdata=(TilesVertical[1] - TilesVertical[0] + 2) - countY
                    DataTot[(countYdata - 1) * 1200* Size_pix:countYdata * 1200* Size_pix,(countX - 1) * 1200* Size_pix:countX * 1200* Size_pix] = data * 0.1
                    downloaded = 1

	 # Make geotiff file
    name2 = os.path.join(output_folder, 'Merged.tif')
    driver = gdal.GetDriverByName("GTiff")
    dst_ds = driver.Create(name2, DataTot.shape[1], DataTot.shape[0], 1, gdal.GDT_Float32, ['COMPRESS=LZW'])
    try:
        dst_ds.SetProjection(proj)
    except:
        proj='PROJCS["unnamed",GEOGCS["Unknown datum based upon the custom spheroid",DATUM["Not specified (based on custom spheroid)",SPHEROID["Custom spheroid",6371007.181,0]],PRIMEM["Greenwich",0],UNIT["degree",0.0174532925199433]],PROJECTION["Sinusoidal"],PARAMETER["longitude_of_center",0],PARAMETER["false_easting",0],PARAMETER["false_northing",0],UNIT["Meter",1]]'
        x1 = (TilesHorizontal[0] - 18) * 1200 * Size_pix * Distance
        x4 = (TilesVertical[0] - 9) * 1200 * Size_pix * -1 * Distance
        geo = [x1, Distance, 0.0, x4, 0.0, -Distance]
        geo_t = tuple(geo)
        dst_ds.SetProjection(proj)

    dst_ds.GetRasterBand(1).SetNoDataValue(-9999)
    dst_ds.SetGeoTransform(geo_t)
    dst_ds.GetRasterBand(1).WriteArray(DataTot)
    dst_ds = None


    return(DataTot,LatMet,LongMet)
示例#15
0
def Download_PROBAV_from_VITO(End_filename, output_folder_temp, Date, latlim, lonlim, type_PROBAV, type_Band):
    """
    This function retrieves PROBAV data for a given date from the
    https://www.vito-eodata.be/PDF/datapool/Free_Data server.

    Restrictions:
    Sign up is needed. The password and username has to be stored within the
    WebAccounts.py

    Keyword arguments
    """

    # Define date
    year_data = Date.year
    month_data = Date.month
    day_data = Date.day

    # Define Tiles
    X_tile_max = int(np.floor((lonlim[1] + 180) / 10.))
    X_tile_min = int(np.floor((lonlim[0] + 180) / 10.))
    Y_tile_min = int(14 - np.ceil((latlim[1] + 65) / 10.))
    Y_tile_max = int(14 - np.ceil((latlim[0] + 65) / 10.))
    X_tiles = list(range(X_tile_min, X_tile_max+1))
    Y_tiles = list(range(Y_tile_min, Y_tile_max+1))
    output_files_PROBAV = []
    
    # Band numbers PROBA-V
    Band_numbers = {'SM':7,'B1':8,'B2':10,'B3':9,'B4':11}
 
    # Get passwords
    username, password = WebAccounts.Accounts(Type='VITO')
    
    # Download all the needed tiles
    for X_tile in X_tiles:
        for Y_tile in Y_tiles:
    
            # filename of ASCAT data on server
            PROBAV_date = "%d%02d%02d" % (year_data, month_data, day_data)
            URL_name = "https://www.vito-eodata.be/PDF/datapool/Free_Data/PROBA-V_100m/%s_%s_100_m_C1/%s/%s/%s/" %(type_PROBAV.split('_')[-1], type_PROBAV.split('_')[0], year_data, month_data, day_data)
        
            # Get version name
            f = requests.get(URL_name,auth = (username, password))
            x = f.content
            soup = BeautifulSoup(x, "lxml")
            i = str(soup.findAll('a', attrs = {'href': re.compile('(?i)(V10\d)')})[0])
            match = re.search(r'_V10\w+', i)
            PROBAV_Version = match.group()

            # Define some output names
            PROBAV_filename = "PROBAV_%s_%s_X%02dY%02d_%s_100M%s.HDF5" %(type_PROBAV.split('_')[-1], type_PROBAV.split('_')[0], X_tile, Y_tile, PROBAV_date, PROBAV_Version)
            PROBAV_name = 'PV_%s_%s-%s_100M%s' %(type_PROBAV.split('_')[-1], type_PROBAV.split('_')[0], PROBAV_date, PROBAV_Version)
            PROBAV_filename_tiff = os.path.join(output_folder_temp, "PROBAV_%s_%s_X%02dY%02d_%s_100M%s_%s.tif" %(type_PROBAV.split('_')[-1], type_PROBAV.split('_')[0], X_tile, Y_tile, PROBAV_date, PROBAV_Version, type_Band))
             
            # Output 
            output_file_PROBAV = os.path.join(output_folder_temp, PROBAV_filename)
            if not os.path.exists(PROBAV_filename_tiff):
                if not os.path.exists(output_file_PROBAV):
                    URL = "https://www.vito-eodata.be/PDF/datapool/Free_Data/PROBA-V_100m/%s_%s_100_m_C1/%s/%s/%s/%s/%s" % (type_PROBAV.split('_')[-1], type_PROBAV.split('_')[0], year_data, month_data, day_data,
                                                          PROBAV_name, PROBAV_filename)
                    # Download the ASCAT data
                    try:
                        y = requests.get(URL, auth=HTTPBasicAuth(username, password))
                    except:
                        from requests.packages.urllib3.exceptions import InsecureRequestWarning
                        requests.packages.urllib3.disable_warnings(InsecureRequestWarning)
                
                        y = requests.get(URL, auth=(username, password), verify=False)
                    
                    # Write the file in system
                    try:                        
                        z = open(output_file_PROBAV, 'wb')
                        z.write(y.content)
                        z.close()
                    except:
                        print("%s is not available" %output_file_PROBAV)
                    
                # Convert hdf5 into tiff    
                try:
                    # output PROBA-V tiff
                    Band_number = Band_numbers[type_Band]
                    if not type_Band == "SM":
                        scaling_factor = 0.005
                    else:
                        scaling_factor = 1.0  
                    
                    # Define the x and y spacing
                    g = gdal.Open(output_file_PROBAV, gdal.GA_ReadOnly)
                    Meta_data = g.GetMetadata()
                    Lat_Top = float(Meta_data['LEVEL3_GEOMETRY_TOP_RIGHT_LATITUDE'])
                    Lon_Left = float(Meta_data['LEVEL3_GEOMETRY_BOTTOM_LEFT_LONGITUDE'])
                    Pixel_size = float((Meta_data['LEVEL3_RADIOMETRY_BLUE_TOC_MAPPING']).split(' ')[-3]) 
                    
                    # Define the georeference of the HDF5 file
                    geo_out = [Lon_Left-0.5*Pixel_size, Pixel_size, 0, Lat_Top+0.5*Pixel_size, 0, -Pixel_size] 
        
                    # Convert hdf5 to tiff
                    DC.Convert_hdf5_to_tiff(output_file_PROBAV, PROBAV_filename_tiff, Band_number, scaling_factor, geo_out)
                  
                    # Define all the good outputs
                    output_files_PROBAV = np.append(output_files_PROBAV, PROBAV_filename_tiff)
                    
                except:
                    print("%s is not created, and replaced by fake dataset" %PROBAV_filename_tiff)
 
                    # Create empty dataset with nan values
                    Empty_Data = np.ones([10080, 10080]) * np.nan
                    Size_Pixel_PROBAV = 0.000992063492063
                    x_min = X_tile * 10 - 0.5 * Size_Pixel_PROBAV - 180
                    y_max =  Y_tile * -10 + 0.5 * Size_Pixel_PROBAV + 75      
                    Geo_out_fake = tuple([x_min, Size_Pixel_PROBAV, 0, y_max, 0, -Size_Pixel_PROBAV])
                    
                    # Save the fake layer
                    DC.Save_as_tiff(PROBAV_filename_tiff, Empty_Data, Geo_out_fake, "WGS84")
                    
            else:
                # Define all the good outputs
                output_files_PROBAV = np.append(output_files_PROBAV, PROBAV_filename_tiff)
                                  
    return(output_files_PROBAV)