示例#1
0
psi[0, 0, 0, 0, 0, 1, 0, 0, 0, 0] = 1.
psi[0, 0, 0, 0, 0, 0, 1, 0, 0, 0] = 1.
psi[0, 0, 0, 0, 0, 0, 0, 1, 0, 0] = 1.
psi[0, 0, 0, 0, 0, 0, 0, 0, 1, 0] = 1.j
psi[0, 0, 0, 0, 0, 0, 0, 0, 0, 1] = 1.

wf = wf.wavefunction()
wf.addwf(psi, n, alphabet)
#wf.random_wavefunction(n, alphabet)

z = np.array([[1, 0], [0, -1]])
x = np.array([[0, 1], [1, 0]])

expectation_wf = []
for i in range(n):
    expectation_wf.append(wf.SingleSpinMeasurement(i, z))

expectation_mps = np.zeros((n, t_max), dtype=complex)
expectation_graph = np.zeros((n, t_max), dtype=complex)
correlations_mps = np.zeros((n, t_max), dtype=complex)
correlations_graph = np.zeros((n, t_max), dtype=complex)

model = mps.MPS('OPEN')
s = time.time()
model.wavefunction2mps(wf.tensor, k)
e = time.time()
print('wf 2 mps time is:', e - s)

for t in range(t_max):
    s = time.time()
    graph = denfg.Graph()
示例#2
0
import DEnFG as denfg

k = 6
n = 4
alphabet = 2
t_max = 20
error = 1e-6
psi = np.array([[[[1., 1.], [2., 0.5 + 3.j]], [[4., 8.j], [-1.j, 2.]]], [[[4., 1.j], [2., 1.j]], [[3.j, 4.], [2., 1.j]]]])
#psi = np.array([[[[1., 0.], [0., 0.j]], [[0., 0.j], [0.j, 0.]]], [[[1.j, 0.j], [0., 0.j]], [[0.j, 0.], [0., 0.j]]]])

wf = wf.wavefunction()
wf.addwf(psi, n, alphabet)

z = np.array([[1, 0], [0, -1]])

expectation_z0_wf = wf.SingleSpinMeasurement(0, z)
expectation_z1_wf = wf.SingleSpinMeasurement(1, z)
expectation_z2_wf = wf.SingleSpinMeasurement(2, z)
expectation_z3_wf = wf.SingleSpinMeasurement(3, z)

expectation_z0_mps = []
expectation_z1_mps = []
expectation_z2_mps = []
expectation_z3_mps = []

expectation_z0_graph = []
expectation_z1_graph = []
expectation_z2_graph = []
expectation_z3_graph = []

示例#3
0
psi = np.array([[[[[[-0.5, 0.], [0., 0.j]], [[0., 0.j], [0.j, 0.]]], [[[0., 0.j], [0., 0.j]], [[0.j, 0.], [0., 0.j]]]],
                [[[[1.j, 0.], [0., 0.j]], [[0., 0.j], [0.j, 0.]]], [[[0., 0.j], [0., 0.j]], [[0.j, 0.], [0., 0.j]]]]],
                [[[[[0.2j, 0.], [0., 0.j]], [[0., 0.j], [0.j, 0.]]], [[[0., 0.j], [-0.5, 0.j]], [[0.j, 0.], [0., 0.j]]]],
                 [[[[1., 0.], [0., 0.j]], [[0., 0.j], [0.j, 0.]]], [[[0., 0.j], [0., 0.j]], [[0.j, 0.], [0., 0.]]]]]])

'''
error1 = []
error2 = []
wf = wf.wavefunction()
wf.random_wavefunction(n, alphabet)
expectation_wf = []
z = np.array([[1, 0], [0, -1]])

for i in range(n - 1):
    b = wf.SingleSpinMeasurement(i, z)
    expectation_wf.append(b[0, 0])

for i in range(1, k):
    print(i)
    #wf.addwf(psi, n, alphabet)
    #wf.random_wavefunction(n, alphabet)

    expectation_mps1 = np.zeros(n - 1, dtype=complex)
    expectation_mps2 = np.zeros(n - 1, dtype=complex)

    model1 = mps.MPS('OPEN')
    s = time.time()
    model1.wavefunction2mps(wf.tensor, i)
    e = time.time()
    print(e - s, '  1')