def readingVideo(videoFile,list_color,classifier,file_name):
    Color = preprocessing.ColorDetection()
    File = preprocessing.File()
    RegionGrowing = preprocessing.RegionGrowing()
    ImageProcessing = preprocessing.ImageProcessing()
    Moving = preprocessing.Moving()
    
    fireFrame = numpy.array([0,0,0,0])
    list_wavelet = []
    AllFrame = 0
    counter = 0

    starts = time.time()
    while(File.isOpened(videoFile)):
        try :
            currentFrame = File.readVideo(videoFile)[1]
            if len(currentFrame) == 0:
                return

            currentFrame2 = copy.copy(currentFrame)
            currentFrame = ImageProcessing.getDownSize(currentFrame)

            counter+=1
            movingFrame = Moving.getMovingForeGround(copy.copy(currentFrame))
            movingPixel = Moving.getMovingCandidatePixel(movingFrame)
            ColorCandidatePixel = Color.getColorCandidatePixel(copy.copy(movingPixel), copy.copy(currentFrame), list_color)
            region = RegionGrowing.getRegionGrowing(ColorCandidatePixel[0], copy.copy(currentFrame),list_color,counter)
            sizeRegionCandidatePixel = RegionGrowing.getFilterSizeRegion(copy.copy(ColorCandidatePixel[0]),copy.copy(region))
            grayImage = ImageProcessing.getRGBtoGray(currentFrame2)
            LL,(HL,LH,HH) = wv.toWavelet(copy.copy(grayImage))

            list_wavelet.append([HL,LH,HH])
            if (counter<=10):
                continue
            list_wavelet.pop(0)
            FinalCandidatePixel = cls.doClassification(classifier,copy.copy(sizeRegionCandidatePixel[0]),list_wavelet)
            # fireFrameImage = Moving.markingFire2(FinalCandidatePixel[0],currentFrame)
            fireFrameImage = ImageProcessing.getUpSize((Moving.markingFire(FinalCandidatePixel[0],currentFrame2, 2)))
            File.showVideo('Final',fireFrameImage)
            
            if len(movingPixel[0])>0:
                fireFrame[0]+=1
            if len(ColorCandidatePixel[0])>0:
                fireFrame[1]+=1
            if len(sizeRegionCandidatePixel[0])>0:
                fireFrame[2]+=1
            if len(FinalCandidatePixel[0])>0:
                fireFrame[3]+=1

            AllFrame+=1

            File.waitVideo(1)

        except :
            print "Time : ",time.time() - starts
            return (fireFrame)/float(AllFrame),File.getCountFrame(videoFile),time.time() - starts
    print "Time : ",time.time() - starts
    return (fireFrame)/float(AllFrame),File.getCountFrame(videoFile),time.time() - starts
示例#2
0
def readingVideo(videoFile):

    Color = preprocessing.ColorDetection()
    File = preprocessing.File()
    RegionGrowing = preprocessing.RegionGrowing()
    ImageProcessing = preprocessing.ImageProcessing()
    Moving = preprocessing.Moving()

    stdDev, mean = Color.getStdDevAndMean('-dataset-fire_image')
    print "Stdev : "+str(stdDev), "Mean : "+str(mean)
    print "Video Frame : ",File.getCountFrame(videoFile)
    print "Video Size : ",len(File.readVideo(videoFile)[1]),len(File.readVideo(videoFile)[1][0])

    classifier = cls.getClassifier('-file-datatraining/TA.xls','rbf',5)
    fireFrame = numpy.array([0,0,0,0])
    list_wavelet = []
    list_color = Color.getFireArray('-dataset-fire_file/color_5x10^-9.txt')
    AllFrame = 0
    counter = 0

    starts = time.time()
    while(File.isOpened(videoFile)):
        try :
            #get curent frame
            currentFrame = File.readVideo(videoFile)[1]

            if len(currentFrame) == 0:
                return

            currentFrame2 = copy.copy(currentFrame)
            currentFrame = ImageProcessing.getDownSize(currentFrame)
            counter+=1

            File.saveImage('-code-approving/'+str(counter)+'.png',currentFrame)
            File.saveImage('-code-approving/'+str(counter)+'_2.png',currentFrame2)

            # step 1 get moving pixel
            movingFrame = Moving.getMovingForeGround(copy.copy(currentFrame))
            movingPixel = Moving.getMovingCandidatePixel(movingFrame)
            mvng = mv.getMovingForeGroundColor(currentFrame,movingFrame)

            File.saveImage('-code-approving/mvng'+str(counter)+'.png',mvng)

            # step 2 candidate pixel ( color probability )
            ColorCandidatePixel = Color.getColorCandidatePixel(copy.copy(movingPixel), copy.copy(currentFrame), list_color)
            clr = mv.delPixel(ColorCandidatePixel[1], mvng)

            File.saveImage('-code-approving/clr'+str(counter)+'.png',clr)

            #region growing
            region = RegionGrowing.getRegionGrowing(ColorCandidatePixel[0], copy.copy(currentFrame),list_color,counter)

            reg = copy.copy(currentFrame)

            for y in range(0,len(region)):
                for x in range(0,len(region[y])):                    
                    if region[y][x] == 0:
                        reg[y][x] = [0,0,0]

            # step 3 region candidate pixel ( region size )
            sizeRegionCandidatePixel = RegionGrowing.getFilterSizeRegion(copy.copy(ColorCandidatePixel[0]),copy.copy(region))
            siz = mv.delPixel(sizeRegionCandidatePixel[1], clr)

            File.saveImage('-code-approving/siz'+str(counter)+'.png',siz)

            #preparing classification
            grayImage = ImageProcessing.getRGBtoGray(currentFrame2)
            LL,(HL,LH,HH) = wv.toWavelet(copy.copy(grayImage))

            list_wavelet.append([HL,LH,HH])
            if (counter<=10):
                continue
            list_wavelet.pop(0)

            FinalCandidatePixel = cls.doClassification(classifier,copy.copy(sizeRegionCandidatePixel[0]),list_wavelet)

            fireFrameImage = Moving.markingFire(FinalCandidatePixel[0],currentFrame2, 2)
            fre = mv.delPixel(FinalCandidatePixel[1], siz)
            File.saveImage('-code-approving/fre'+str(counter)+'.png',fre)

            # fireFrameImage = Moving.markingFire(FinalCandidatePixel[0],currentFrame)
            File.showVideo('Final',fireFrameImage)

            File.saveImage('-code-approving/fnl'+str(counter)+'.png',fireFrameImage)

            if len(movingPixel[0])>0:
                fireFrame[0]+=1
            if len(ColorCandidatePixel[0])>0:
                fireFrame[1]+=1
            if len(sizeRegionCandidatePixel[0])>0:
                fireFrame[2]+=1
            if len(FinalCandidatePixel[0])>0:
                fireFrame[3]+=1

            AllFrame+=1

            File.waitVideo(1)

        except :
            print "Time : ",time.time() - starts
            return (fireFrame)/float(AllFrame)
    print "Time : ",time.time() - starts
    return (fireFrame)/float(AllFrame)
示例#3
0
def readingVideo(videoFile):

    Color = preprocessing.ColorDetection()
    File = preprocessing.File()
    RegionGrowing = preprocessing.RegionGrowing()
    ImageProcessing = preprocessing.ImageProcessing()
    Moving = preprocessing.Moving()

    stdDev, mean = Color.getStdDevAndMean("-dataset-fire_image")
    print "Stdev : " + str(stdDev), "Mean : " + str(mean)
    print "Video Frame : ", File.getCountFrame(videoFile)
    print "Video Size : ", len(File.readVideo(videoFile)[1]), len(File.readVideo(videoFile)[1][0])

    classifier = cls.getClassifier("-file-datatraining/TA.xls", "rbf", 5)
    fireFrame = numpy.array([0, 0, 0, 0])
    list_wavelet = []
    list_color = Color.getFireArray("-dataset-fire_file/color_5x10^-9.txt")
    AllFrame = 0
    counter = 0

    starts = time.time()
    while File.isOpened(videoFile):
        try:
            # get curent frame
            currentFrame = File.readVideo(videoFile)[1]

            if len(currentFrame) == 0:
                return

            currentFrame2 = copy.copy(currentFrame)
            currentFrame = ImageProcessing.getDownSize(currentFrame)
            counter += 1

            # step 1 get moving pixel
            movingFrame = Moving.getMovingForeGround(copy.copy(currentFrame))
            movingPixel = Moving.getMovingCandidatePixel(movingFrame)

            # step 2 candidate pixel ( color probability )
            ColorCandidatePixel = Color.getColorCandidatePixel(
                copy.copy(movingPixel), copy.copy(currentFrame), list_color
            )

            # region growing
            region = RegionGrowing.getRegionGrowing(
                ColorCandidatePixel[0], copy.copy(currentFrame), list_color, counter
            )

            # step 3 region candidate pixel ( region size )
            sizeRegionCandidatePixel = RegionGrowing.getFilterSizeRegion(
                copy.copy(ColorCandidatePixel[0]), copy.copy(region)
            )

            # preparing classification
            grayImage = ImageProcessing.getRGBtoGray(currentFrame2)
            LL, (HL, LH, HH) = wv.toWavelet(copy.copy(grayImage))

            list_wavelet.append([HL, LH, HH])
            if counter <= 10:
                continue
            list_wavelet.pop(0)

            FinalCandidatePixel = cls.doClassification(classifier, copy.copy(sizeRegionCandidatePixel[0]), list_wavelet)

            fireFrameImage = Moving.markingFire(FinalCandidatePixel[0], currentFrame2, 2)

            # fireFrameImage = Moving.markingFire2(FinalCandidatePixel[0],currentFrame)
            File.showVideo("Final", fireFrameImage)

            if len(movingPixel[0]) > 0:
                fireFrame[0] += 1
            if len(ColorCandidatePixel[0]) > 0:
                fireFrame[1] += 1
            if len(sizeRegionCandidatePixel[0]) > 0:
                fireFrame[2] += 1
            if len(FinalCandidatePixel[0]) > 0:
                fireFrame[3] += 1

            AllFrame += 1

            File.waitVideo(1)

        except:
            print "Time : ", time.time() - starts
            return (fireFrame) / float(AllFrame)
    print "Time : ", time.time() - starts
    return (fireFrame) / float(AllFrame)
示例#4
0
def readingVideo(videoFile):
    stdDev, mean = pd.getStdDevAndMean('__ChoosenImage2')
    print "Stdev : "+str(stdDev), "Mean : "+str(mean)
    print "Video Frame : ",vd.countFrame(videoFile)
    print "Video Size : ",len(vd.readVideo(videoFile)[1]),len(vd.readVideo(videoFile)[1][0])

    counter = 0
    cdt = preprocessing.colorDetection()
    idt = preprocessing.intensityDetection()
    lum = preprocessing.luminance()
    grw = preprocessing.growing()

    classifier = cls.getClassification()
    fireFrame = numpy.array([0,0,0,0,0,0])
    ListWavelet = []
    ListLuminance = []
    ListGrayImage = []
    ListRegion = []
    AllFrame = 0
    list_color = cdt.retriveColorList()
    starts = time.time()
    while(vd.isOpened(videoFile)):
        try :
            #get curent frame
            currentFrame = vd.readVideo(videoFile)[1]
            #compres image
            while (len(currentFrame)>150):
                if (len(currentFrame)<=300):
                    currentFrame2 = copy.copy(currentFrame)
                currentFrame = vd.downSize(currentFrame)
            counter+=1

            # step 1 get moving pixel
            movingFrame = mv.getMovingForeGround(vd.copyFile(currentFrame))
            movingPixel = mv.getMovingPixel(vd.copyFile(movingFrame))

            # step 2 candidate pixel ( color probability )
            # ColorCandidatePixel = cdt.getColorCandidatePixel(copy.copy(movingPixel), copy.copy(currentFrame), stdDev, mean)
            ColorCandidatePixel = cdt.getColorCandidatePixel2(copy.copy(movingPixel), copy.copy(currentFrame), list_color)

            #region growing
            # region = grw.getGrowingRegion(ColorCandidatePixel[0], copy.copy(currentFrame),stdDev, mean)
            region = grw.getGrowingRegion2(ColorCandidatePixel[0], copy.copy(currentFrame),list_color)

            # step 3 candidate pixel ( brightness ), convert image to gray with luminance and split by region
            luminanceImageGray = lum.getLuminanceImageGray(copy.copy(currentFrame))
            LuminanceCandidatePixel = idt.getLuminanceCandidatePixel(copy.copy(luminanceImageGray),copy.copy(ColorCandidatePixel[0]),copy.copy(region))

            # step 4 candidate pixel ( variance color per region ) -- issue on threshold --
            VarianceCandidatePixel = grw.getVarianceColorRegion(copy.copy(currentFrame),copy.copy(LuminanceCandidatePixel[0]),copy.copy(region))

            #preparing step 5 & 6
            grayImage = vd.toGray(currentFrame2)
            LL,(HL,LH,HH) = wv.toWavelet(copy.copy(grayImage))
            luminanceImage = lum.getLumiananceImage(currentFrame)

            ListLuminance.append(luminanceImage)
            ListWavelet.append([HL,LH,HH])
            ListGrayImage.append(copy.copy(grayImage))
            ListRegion.append(region)
            if (counter<=10):
                continue
            ListLuminance.pop(0)
            ListWavelet.pop(0)
            ListGrayImage.pop(0)
            ListRegion.pop(0)

            DiferenceCandidatePixel = idt.getDiferencePixel(ListLuminance,copy.copy(VarianceCandidatePixel[0]))

            # RegionCenterMovement = grw.getGrowingCenterPoint(ListRegion,copy.copy(DiferenceCandidatePixel[0]))

            # DiferenceCandidatePixel = idt.getDiferencePixel2(ListLuminance,copy.copy(DiferenceCandidatePixel[0]))

            FinalCandidatePixel = cls.doClassification(classifier,copy.copy(DiferenceCandidatePixel[0]),ListWavelet)
            if len(movingPixel[0])>0:
                fireFrame[0]+=1
            if len(ColorCandidatePixel[0])>0:
                fireFrame[1]+=1
            if len(LuminanceCandidatePixel[0])>0:
                fireFrame[2]+=1
            if len(VarianceCandidatePixel[0])>0:
                fireFrame[3]+=1
            if len(DiferenceCandidatePixel[0])>0:
                fireFrame[4]+=1
            # if len(RegionCenterMovement[0])>0:
            #     fireFrame[5]+=1
            if len(FinalCandidatePixel[0])>0:
                fireFrame[5]+=1
            AllFrame+=1

            fireFrameImage = vd.upSize(vd.upSize(mv.markPixelRectangle(FinalCandidatePixel[0],currentFrame)))
            vd.showVideo('Final',fireFrameImage)

            vd.waitVideo(1)

        except :
            print "Time : ",time.time() - starts
            return (fireFrame)/float(AllFrame)
    print "Time : ",time.time() - starts
    return (fireFrame)/float(AllFrame)
示例#5
0
def readingVideo(videoFile):
    stdDev, mean = pd.getStdDevAndMean('__ChoosenImage2')
    print "Stdev : "+str(stdDev), "Mean : "+str(mean)
    print "Video Frame : ",vd.countFrame(videoFile)
    print "Video Size : ",len(vd.readVideo(videoFile)[1]),len(vd.readVideo(videoFile)[1][0])

    counter = 0
    cdt = preprocessing.colorDetection()
    idt = preprocessing.intensityDetection()
    lum = preprocessing.luminance()
    grw = preprocessing.growing()

    classifier = cls.getClassification()
    fireFrame = numpy.array([0,0,0,0,0,0])
    ListWavelet = []
    ListLuminance = []
    ListGrayImage = []
    AllFrame = 0

    while(vd.isOpened(videoFile)):
        try :
            #get curent frame
            currentFrame = vd.readVideo(videoFile)[1]
            #compres image
            while (len(currentFrame)>150):
                if (len(currentFrame)<=300):
                    currentFrame2 = copy.copy(currentFrame)
                currentFrame = vd.downSize(currentFrame)

            # step 1 get moving pixel
            movingFrame = mv.getMovingForeGround(vd.copyFile(currentFrame))
            movingPixel = mv.getMovingPixel(vd.copyFile(movingFrame))

            # step 2 candidate pixel ( color probability )
            ColorCandidatePixel = cdt.getCandidatePixel(copy.copy(movingPixel), copy.copy(currentFrame), stdDev, mean)

            # step 3 candidate pixel ( brightness ), convert image to gray with luminance
            luminanceImageGray = lum.getLuminanceImageGray(copy.copy(currentFrame))
            LuminanceCandidatePixel = idt.getIntensityPixel(copy.copy(luminanceImageGray),copy.copy(ColorCandidatePixel[0]),copy.copy(movingPixel))

            #convert image to luminance image with gaussian filter 7 and 13
            luminanceImage = lum.getLumiananceImage(currentFrame)

            # covert image to wavelet
            grayImage = vd.toGray(currentFrame2)
            LL,(HL,LH,HH) = wv.toWavelet(copy.copy(grayImage))

            #step 4 get floodfill
            ListGrowPixel,avg_region, region = grw.getRegion(LuminanceCandidatePixel[0],copy.copy(currentFrame),stdDev, mean)

            #append image
            ListLuminance.append(luminanceImage)
            ListWavelet.append([HL,LH,HH])
            ListGrayImage.append(copy.copy(grayImage))

            counter+=1
            if (counter<=10):
                continue

            ListLuminance.pop(0)
            ListWavelet.pop(0)
            ListGrayImage.pop(0)

            ListDiferrentPixel = idt.getDiferencePixel(ListLuminance,copy.copy(ListGrowPixel[0]))
            # ListDiferrentPixel = copy.copy(ListGrowPixel)

            # step 6
            FinalCandidatePixel = cls.doClassification(classifier,copy.copy(ListDiferrentPixel[0]),ListWavelet)
            # cls.doClassification(classifier,copy.copy(ListCandidatePixel[0]),ListWavelet)

            if len(movingPixel[0])>0:
                fireFrame[0]+=1
            if len(ColorCandidatePixel[0])>0:
                fireFrame[1]+=1
            if len(LuminanceCandidatePixel[0])>0:
                fireFrame[2]+=1
            if len(ListGrowPixel[0])>0:
                fireFrame[3]+=1
            if len(ListDiferrentPixel[0])>0:
                fireFrame[4]+=1
            if len(FinalCandidatePixel[0])>0:
                fireFrame[5]+=1
            AllFrame+=1

            fireFrameImage = vd.upSize(vd.upSize(mv.markPixelRectangle(FinalCandidatePixel[0],currentFrame)))
            vd.showVideo('Final',fireFrameImage)
            vd.waitVideo(1)

        except:
            return (fireFrame)/float(AllFrame)
    return (fireFrame)/float(AllFrame)
def readingVideo(videoFile, list_color, classes):
    Color = preprocessing.ColorDetection()
    File = preprocessing.File()
    Intensity = preprocessing.Intensity()
    Luminance = preprocessing.Luminance()
    RegionGrowing = preprocessing.RegionGrowing()
    ImageProcessing = preprocessing.ImageProcessing()
    Moving = preprocessing.Moving()

    list_wavelet = []
    list_luminance = []
    list_gray_image = []
    list_region = []
    counter = 0

    feature = []
    feature.append(['-','-','-','-','-','-','-','-','-','-'])
    while(File.isOpened(videoFile)):
        try :
            #get curent frame
            currentFrame = File.readVideo(videoFile)[1]
            #compres image
            while (len(currentFrame)>150):
                if (len(currentFrame)<=300):
                    currentFrame2 = copy.copy(currentFrame)
                currentFrame = ImageProcessing.getDownSize(currentFrame)
            counter+=1

            gray_image = ImageProcessing.getRGBtoGray(copy.copy(currentFrame))

            # step 1 get moving pixel
            movingFrame = Moving.getMovingForeGround(copy.copy(currentFrame))
            movingPixel = Moving.getMovingCandidatePixel(movingFrame)

            # step 2 candidate pixel ( color probability )
            ColorCandidatePixel = Color.getColorCandidatePixel(copy.copy(movingPixel), copy.copy(currentFrame), list_color)

            #region growing
            region = RegionGrowing.getRegionGrowing(ColorCandidatePixel[0], copy.copy(currentFrame),list_color,counter)

            # step 3 candidate pixel ( brightness ), convert image to gray with luminance and split by region
            luminanceImageGray = Luminance.getLuminanceImageGray(copy.copy(gray_image))
            LuminanceCandidatePixel = Intensity.getLuminanceCandidatePixel(copy.copy(luminanceImageGray),copy.copy(ColorCandidatePixel[0]),copy.copy(region))

            # step 4 candidate pixel ( variance color per region ) -- issue on threshold --
            VarianceCandidatePixel = RegionGrowing.getVarianceColorCandidatePixel(copy.copy(currentFrame),copy.copy(LuminanceCandidatePixel[0]),copy.copy(region))

            #preparing step 5 & 6
            grayImage = ImageProcessing.getRGBtoGray(currentFrame2)
            LL,(HL,LH,HH) = wv.toWavelet(copy.copy(grayImage))
            luminanceImage = Luminance.getLumiananceImage(copy.copy(gray_image))

            list_luminance.append(luminanceImage)
            list_wavelet.append([HL,LH,HH])
            list_gray_image.append(copy.copy(grayImage))
            list_region.append(region)
            if (counter<=10):
                continue
            list_luminance.pop(0)
            list_wavelet.pop(0)
            list_gray_image.pop(0)
            list_region.pop(0)

            DiferenceCandidatePixel = Intensity.getDifferenceCandidatePixel(list_luminance,copy.copy(VarianceCandidatePixel[0]))
            RegionCenterMovement = RegionGrowing.getMovingPointCandidatePixel2(list_region,copy.copy(DiferenceCandidatePixel[0]))

            tmp_feature = classification.returnDataTraining(RegionCenterMovement[0],list_wavelet)
            feature.append(tmp_feature)
            fireFrameImage = (ImageProcessing.getUpSize(Moving.markingFire(RegionCenterMovement[0],currentFrame2, 2)))
            File.showVideo('result',fireFrameImage)
            File.waitVideo(1)

        except:
            excel.writeDataTraining('../-file-datatraining/api_TA2.xls',feature,classes)
            return
    return