def test_assert_different_length_batch_generation():
    # prepare batch
    batch = 4
    length = 32
    x = np.random.randint(0, 256, size=(batch, 1))
    h = np.random.randn(batch, 28, length)
    length_list = sorted(
        list(np.random.randint(length // 2, length - 1, batch)))

    with torch.no_grad():
        net = WaveNet(256, 28, 4, 4, 10, 3, 2)
        net.apply(initialize)
        net.eval()

        # sample-by-sample generation
        gen1_list = []
        for x_, h_, length in zip(x, h, length_list):
            batch_x = torch.from_numpy(np.expand_dims(x_, 0)).long()
            batch_h = torch.from_numpy(np.expand_dims(h_, 0)).float()
            gen1 = net.fast_generate(batch_x, batch_h, length, 1, "argmax")
            gen1_list += [gen1]

        # batch generation
        batch_x = torch.from_numpy(x).long()
        batch_h = torch.from_numpy(h).float()
        gen2_list = net.batch_fast_generate(batch_x, batch_h, length_list, 1,
                                            "argmax")

        # assertion
        for gen1, gen2 in zip(gen1_list, gen2_list):
            np.testing.assert_array_equal(gen1, gen2)
示例#2
0
def test_generate():
    batch = 2
    x = np.random.randint(0, 256, size=(batch, 1))
    h = np.random.randn(batch, 28, 10)
    length = h.shape[-1] - 1
    with torch.no_grad():
        net = WaveNet(256, 28, 4, 4, 10, 3, 2)
        net.apply(initialize)
        net.eval()
        for x_, h_ in zip(x, h):
            batch_x = torch.from_numpy(np.expand_dims(x_, 0)).long()
            batch_h = torch.from_numpy(np.expand_dims(h_, 0)).float()
            net.generate(batch_x, batch_h, length, 1, "sampling")
            net.fast_generate(batch_x, batch_h, length, 1, "sampling")
        batch_x = torch.from_numpy(x).long()
        batch_h = torch.from_numpy(h).float()
        net.batch_fast_generate(batch_x, batch_h, [length] * batch, 1, "sampling")
示例#3
0
    def gpu_decode(feat_list, gpu):
        # set default gpu and do not track gradient
        torch.cuda.set_device(gpu)
        torch.set_grad_enabled(False)

        # define model and load parameters
        if config.use_upsampling_layer:
            upsampling_factor = config.upsampling_factor
        else:
            upsampling_factor = 0
        model = WaveNet(n_quantize=config.n_quantize,
                        n_aux=config.n_aux,
                        n_resch=config.n_resch,
                        n_skipch=config.n_skipch,
                        dilation_depth=config.dilation_depth,
                        dilation_repeat=config.dilation_repeat,
                        kernel_size=config.kernel_size,
                        upsampling_factor=upsampling_factor)
        model.load_state_dict(
            torch.load(args.checkpoint,
                       map_location=lambda storage, loc: storage)["model"])
        model.eval()
        model.cuda()

        # define generator
        generator = decode_generator(
            feat_list,
            batch_size=args.batch_size,
            feature_type=config.feature_type,
            wav_transform=wav_transform,
            feat_transform=feat_transform,
            upsampling_factor=config.upsampling_factor,
            use_upsampling_layer=config.use_upsampling_layer,
            use_speaker_code=config.use_speaker_code)

        # decode
        if args.batch_size > 1:
            for feat_ids, (batch_x, batch_h, n_samples_list) in generator:
                logging.info("decoding start")
                samples_list = model.batch_fast_generate(
                    batch_x, batch_h, n_samples_list, args.intervals)
                for feat_id, samples in zip(feat_ids, samples_list):
                    wav = decode_mu_law(samples, config.n_quantize)
                    sf.write(args.outdir + "/" + feat_id + ".wav", wav,
                             args.fs, "PCM_16")
                    logging.info("wrote %s.wav in %s." %
                                 (feat_id, args.outdir))
        else:
            for feat_id, (x, h, n_samples) in generator:
                logging.info("decoding %s (length = %d)" %
                             (feat_id, n_samples))
                samples = model.fast_generate(x, h, n_samples, args.intervals)
                wav = decode_mu_law(samples, config.n_quantize)
                sf.write(args.outdir + "/" + feat_id + ".wav", wav, args.fs,
                         "PCM_16")
                logging.info("wrote %s.wav in %s." % (feat_id, args.outdir))
def test_assert_fast_generation():
    # get batch
    batch = 2
    x = np.random.randint(0, 256, size=(batch, 1))
    h = np.random.randn(batch, 28, 32)
    length = h.shape[-1] - 1

    with torch.no_grad():
        # --------------------------------------------------------
        # define model without upsampling and with kernel size = 2
        # --------------------------------------------------------
        net = WaveNet(256, 28, 4, 4, 10, 3, 2)
        net.apply(initialize)
        net.eval()

        # sample-by-sample generation
        gen1_list = []
        gen2_list = []
        for x_, h_ in zip(x, h):
            batch_x = torch.from_numpy(np.expand_dims(x_, 0)).long()
            batch_h = torch.from_numpy(np.expand_dims(h_, 0)).float()
            gen1 = net.generate(batch_x, batch_h, length, 1, "argmax")
            gen2 = net.fast_generate(batch_x, batch_h, length, 1, "argmax")
            np.testing.assert_array_equal(gen1, gen2)
            gen1_list += [gen1]
            gen2_list += [gen2]
        gen1 = np.stack(gen1_list)
        gen2 = np.stack(gen2_list)
        np.testing.assert_array_equal(gen1, gen2)

        # batch generation
        batch_x = torch.from_numpy(x).long()
        batch_h = torch.from_numpy(h).float()
        gen3_list = net.batch_fast_generate(batch_x, batch_h, [length] * batch,
                                            1, "argmax")
        gen3 = np.stack(gen3_list)
        np.testing.assert_array_equal(gen3, gen2)

        # --------------------------------------------------------
        # define model without upsampling and with kernel size = 3
        # --------------------------------------------------------
        net = WaveNet(256, 28, 4, 4, 10, 3, 3)
        net.apply(initialize)
        net.eval()

        # sample-by-sample generation
        gen1_list = []
        gen2_list = []
        for x_, h_ in zip(x, h):
            batch_x = torch.from_numpy(np.expand_dims(x_, 0)).long()
            batch_h = torch.from_numpy(np.expand_dims(h_, 0)).float()
            gen1 = net.generate(batch_x, batch_h, length, 1, "argmax")
            gen2 = net.fast_generate(batch_x, batch_h, length, 1, "argmax")
            np.testing.assert_array_equal(gen1, gen2)
            gen1_list += [gen1]
            gen2_list += [gen2]
        gen1 = np.stack(gen1_list)
        gen2 = np.stack(gen2_list)
        np.testing.assert_array_equal(gen1, gen2)

        # batch generation
        batch_x = torch.from_numpy(x).long()
        batch_h = torch.from_numpy(h).float()
        gen3_list = net.batch_fast_generate(batch_x, batch_h, [length] * batch,
                                            1, "argmax")
        gen3 = np.stack(gen3_list)
        np.testing.assert_array_equal(gen3, gen2)

        # get batch
        batch = 2
        upsampling_factor = 10
        x = np.random.randint(0, 256, size=(batch, 1))
        h = np.random.randn(batch, 28, 3)
        length = h.shape[-1] * upsampling_factor - 1

        # -----------------------------------------------------
        # define model with upsampling and with kernel size = 2
        # -----------------------------------------------------
        net = WaveNet(256, 28, 4, 4, 10, 3, 2, upsampling_factor)
        net.apply(initialize)
        net.eval()

        # sample-by-sample generation
        gen1_list = []
        gen2_list = []
        for x_, h_ in zip(x, h):
            batch_x = torch.from_numpy(np.expand_dims(x_, 0)).long()
            batch_h = torch.from_numpy(np.expand_dims(h_, 0)).float()
            gen1 = net.generate(batch_x, batch_h, length, 1, "argmax")
            gen2 = net.fast_generate(batch_x, batch_h, length, 1, "argmax")
            np.testing.assert_array_equal(gen1, gen2)
            gen1_list += [gen1]
            gen2_list += [gen2]
        gen1 = np.stack(gen1_list)
        gen2 = np.stack(gen2_list)
        np.testing.assert_array_equal(gen1, gen2)

        # batch generation
        batch_x = torch.from_numpy(x).long()
        batch_h = torch.from_numpy(h).float()
        gen3_list = net.batch_fast_generate(batch_x, batch_h, [length] * batch,
                                            1, "argmax")
        gen3 = np.stack(gen3_list)
        np.testing.assert_array_equal(gen3, gen2)

        # -----------------------------------------------------
        # define model with upsampling and with kernel size = 3
        # -----------------------------------------------------
        net = WaveNet(256, 28, 4, 4, 10, 3, 2, upsampling_factor)
        net.apply(initialize)
        net.eval()

        # sample-by-sample generation
        gen1_list = []
        gen2_list = []
        for x_, h_ in zip(x, h):
            batch_x = torch.from_numpy(np.expand_dims(x_, 0)).long()
            batch_h = torch.from_numpy(np.expand_dims(h_, 0)).float()
            gen1 = net.generate(batch_x, batch_h, length, 1, "argmax")
            gen2 = net.fast_generate(batch_x, batch_h, length, 1, "argmax")
            np.testing.assert_array_equal(gen1, gen2)
            gen1_list += [gen1]
            gen2_list += [gen2]
        gen1 = np.stack(gen1_list)
        gen2 = np.stack(gen2_list)
        np.testing.assert_array_equal(gen1, gen2)

        # batch generation
        batch_x = torch.from_numpy(x).long()
        batch_h = torch.from_numpy(h).float()
        gen3_list = net.batch_fast_generate(batch_x, batch_h, [length] * batch,
                                            1, "argmax")
        gen3 = np.stack(gen3_list)
        np.testing.assert_array_equal(gen3, gen2)