def read_local_ncfiles(**kwargs): """ Wrapping function to read satellite netcdf files. param: pathlst - list of paths to be parsed product - product as specified in satellite_specs.yaml varalias sd - start date (datetime object) ed - start date (datetime object) twin - time window (temporal constraint) in minutes return: dictionary of variables for the satellite_class object """ pathlst = kwargs.get('pathlst') product = kwargs.get('product') varalias = kwargs.get('varalias') sdate = kwargs.get('sdate') edate = kwargs.get('edate') twin = kwargs.get('twin') # adjust start and end sdate = sdate - timedelta(minutes=twin) edate = edate + timedelta(minutes=twin) # get meta data ncmeta = ncdumpMeta(pathlst[0]) ncvar = get_filevarname(varalias, variable_info, satellite_dict[product], ncmeta) # retrieve sliced data ds = read_netcdfs(pathlst) ds_sort = ds.sortby('time') ds_sliced = ds_sort.sel(time=slice(sdate, edate)) # make dict and start with stdvarname for varalias stdvarname = variable_info[varalias]['standard_name'] var_sliced = ds_sliced[ncvar] vardict = {} vardict[stdvarname] = list(var_sliced.values) # add coords to vardict # 1. retrieve list of coordinates coords_lst = list(var_sliced.coords.keys()) # 2. iterate over coords_lst for varname in coords_lst: stdcoordname = ds_sliced[varname].attrs['standard_name'] if stdcoordname == 'longitude': vardict[stdcoordname] = \ list(((ds_sliced[varname].values - 180) % 360) - 180) elif stdcoordname == 'time': # convert to unixtime df_time = ds_sliced[varname].to_dataframe() unxt = (pd.to_datetime(df_time[varname]).view(int) / 10**9) vardict[stdcoordname] = unxt.values vardict['time_unit'] = variable_info[stdcoordname]['units'] else: vardict[stdcoordname] = list(ds_sliced[varname].values) return vardict
def get_model_fc_mode(filestr, model, fc_date, varalias=None, **kwargs): """ fct to retrieve model data for correct time """ vardict = {} print("Get model data according to selected date(s) ....") print(filestr) meta = ncdumpMeta(filestr) stdvarname = variable_info[varalias]['standard_name'] lonsname = get_filevarname('lons',variable_info, model_dict[model],meta) latsname = get_filevarname('lats',variable_info, model_dict[model],meta) timename = get_filevarname('time',variable_info, model_dict[model],meta) # get other variables e.g. Hs [time,lat,lon] filevarname = get_filevarname(varalias,variable_info, model_dict[model],meta) try: model_lons,model_lats,model_time_dt = \ read_model_nc_output_lru(filestr,lonsname,latsname,timename) except Exception as e: print(e) print('continue with uncached retrieval') model_lons,model_lats,model_time_dt = \ read_model_nc_output(filestr,lonsname,latsname,timename) vardict[variable_info['lons']['standard_name']] = model_lons vardict[variable_info['lats']['standard_name']] = model_lats # remove escape character because netCDF4 handles white spaces # but cannot handle escape characters (apparently) filestr = filestr.replace('\\','') f = netCDF4.Dataset(filestr, 'r') model_time = f.variables[timename] l = kwargs.get('vertical_level',0) if (type(filevarname) is dict): print( 'Target variable can be computed from vector \n' 'components with the following aliases: ', filevarname) model_time_dt_valid = model_time_dt[model_time_dt.index(fc_date)] model_time_valid = float(model_time[model_time_dt.index(fc_date)]) model_time_unit = model_time.units vardict[variable_info['time']['standard_name']] = model_time_valid vardict['datetime'] = model_time_dt_valid vardict['time_unit'] = model_time_unit for key in filevarname.keys(): filevarname_dummy = get_filevarname(\ filevarname[key][0], variable_info, model_dict[model],meta) if filevarname_dummy is not None: print(filevarname[key][0], 'exists') break print('Use aliases:', filevarname[key]) model_var_dummy = f.variables[filevarname_dummy] if len(model_var_dummy.dimensions) == 4: model_var_dummy = model_var_dummy[:,l,:,:].squeeze() if len(model_var_dummy.shape) == 3: # for multiple time steps model_var_valid_tmp = \ model_var_dummy[model_time_dt.index(fc_date),:,:].squeeze()**2 for i in range(1, len(filevarname[key])): filevarname_dummy = get_filevarname(\ filevarname[key][i], variable_info, model_dict[model],meta) if len(f.variables[filevarname_dummy].dimensions) == 4: model_var_valid_tmp += \ f.variables[filevarname_dummy][ model_time_dt.index(fc_date),l,:,: ].squeeze()**2 elif len(f.variables[filevarname_dummy].dimensions) == 3: model_var_valid_tmp += \ f.variables[filevarname_dummy][ model_time_dt.index(fc_date),:,: ].squeeze()**2 model_var_valid = np.sqrt(model_var_valid_tmp) elif len(model_var_dummy.dimensions) == 2: model_var_valid_tmp = model_var_dummy[:, :]**2 for i in range(1, len(filevarname[key])): filevarname_dummy = get_filevarname(\ filevarname[key][i], variable_info, model_dict[model], meta) model_var_valid_tmp += \ f.variables[filevarname_dummy][:,:]**2 model_var_valid = np.sqrt(model_var_valid_tmp) else: print('Dimension mismatch!') vardict[stdvarname] = model_var_valid else: model_time_dt_valid = model_time_dt[model_time_dt.index(fc_date)] model_time_valid = float(model_time[model_time_dt.index(fc_date)]) model_time_unit = model_time.units vardict[variable_info['time']['standard_name']] = model_time_valid vardict['datetime'] = model_time_dt_valid vardict['time_unit'] = model_time_unit model_var_link = f.variables[filevarname] if len(model_var_link.dimensions) == 4: model_var_link = model_var_link[:,l,:,:].squeeze() if len(model_var_link.shape) == 3: # for multiple time steps model_var_valid = \ model_var_link[model_time_dt.index(fc_date),:,:].squeeze() elif len(model_var_link.dimensions) == 2: model_var_valid = model_var_link[:, :].squeeze() else: print('Dimension mismatch!') vardict[variable_info[varalias]['standard_name']] = \ model_var_valid # transform masked array to numpy array with NaNs f.close() vardict['longitude'] = vardict['longitude'].filled(np.nan) vardict['latitude'] = vardict['latitude'].filled(np.nan) vardict[variable_info[varalias]['standard_name']] = \ vardict[variable_info[varalias]['standard_name']].filled(np.nan) vardict['meta'] = meta # make lats,lons 2D if only 1D (regular grid) if len(vardict['longitude'].shape)==1: LATS,LONS = np.meshgrid(vardict['latitude'], vardict['longitude']) vardict['longitude']=np.transpose(LONS) vardict['latitude']=np.transpose(LATS) return vardict, filevarname
def collocate_poi_ts(indict,model=None,distlim=None,\ leadtime=None,date_incr=None,varalias=None,twin=None): """ indict: mandatory - lons, lats, time, values optional - leadtime, distlim, date_incr """ # get stdvarname stdvarname = variable_info[varalias]['standard_name'] # datetime or str if isinstance(indict['time'][0], str): poi_dtimes = [parse_date(t) for t in indict['time']] elif isinstance(indict['time'][0], datetime): poi_dtimes = indict['time'] else: print('no valid time/datetime format for poi') print('use either str or datetime') fc_date = make_fc_dates(poi_dtimes[0], poi_dtimes[-1], date_incr) # get coinciding date between fc_date and dates in obs_obj idx1 = collocate_times(unfiltered_t=poi_dtimes, target_t=fc_date, twin=twin) # find valid/coinciding fc_dates if len(idx1) > len(fc_date): print('Muliple assignments within given time window') print('--> only closest to time stamp is chosen') idx_closest = get_closest_date(\ list(np.array(poi_dtimes)[idx1]),\ fc_date) idx1 = list(np.array(idx1)[idx_closest]) # adjust obs_obj according to valid dates for key in indict.keys(): if (key != 'time_unit' and key != 'meta' and key != 'nID'): indict[key] = list(np.array(indict[key])[idx1]) poi_dtimes = list(np.array(poi_dtimes)[idx1]) del idx1 # find valid dates for given leadtime and model fc_date = find_valid_fc_dates_for_model_and_leadtime(\ fc_date,model,leadtime) # adjust fc_date according to obs date idx2 = collocate_times(unfiltered_t=fc_date, target_t=poi_dtimes, twin=twin) fc_date = list(np.array(fc_date)[idx2]) del idx2 # compute time based on time unit from variable definition time_unit = variable_info['time']['units'] time = netCDF4.date2num(poi_dtimes, time_unit) # check if file exists and if it includes desired time and append model_vals = [] model_lons = [] model_lats = [] obs_vals = [] obs_lons = [] obs_lats = [] collocation_idx_x = [] collocation_idx_y = [] distance = [] time_lst = [] dtimes = [] switch = 0 for d in tqdm(range(len(fc_date))): # for t in range(1): with NoStdStreams(): check = False check = check_if_file_is_valid(fc_date[d], model, leadtime) if check == True: # retrieve model fname = make_model_filename_wrapper(model, fc_date[d], leadtime) # get hold of variable names (done only once) if switch == 0: meta = ncdumpMeta(fname) lonsname = get_filevarname('lons', variable_info, model_dict[model], meta) latsname = get_filevarname('lats', variable_info, model_dict[model], meta) timename = get_filevarname('time', variable_info, model_dict[model], meta) filevarname = get_filevarname(varalias, variable_info, model_dict[model], meta) mlons = xr.open_dataset(fname)[lonsname].values # secure lons from -180 to 180 mlons = ((mlons - 180) % 360) - 180 mlats = xr.open_dataset(fname)[latsname].values # ensure matching dimension if len(mlons.shape) == 1: Mlons, Mlats = np.meshgrid(mlons, mlats) else: Mlons, Mlats = mlons, mlats switch = 1 plon = [indict['longitude'][d]] plat = [indict['latitude'][d]] index_array_2d, distance_array, _ = \ collocation_fct(plon,plat,Mlons,Mlats) dst = xr.open_dataset(fname)[timename].values tidx = list(dst).index(np.datetime64(fc_date[d])) # impose distlim if distance_array[0] < distlim * 1000: idx_x = index_array_2d[0][0] idx_y = index_array_2d[1][0] model_lons.append(Mlons[idx_x, idx_y]) model_lats.append(Mlats[idx_x, idx_y]) vals = xr.open_dataset(fname)[filevarname]\ [tidx,idx_x,idx_y].values model_vals.append(vals.item()) obs_vals.append(indict['obs'][d]) obs_lons.append(indict['longitude'][d]) obs_lats.append(indict['latitude'][d]) collocation_idx_x.append(idx_x) collocation_idx_y.append(idx_y) distance.append(distance_array[0]) time_lst.append(time[d]) dtimes.append(poi_dtimes[d]) results_dict = { 'valid_date': dtimes, 'time': time_lst, 'time_unit': time_unit, 'datetime': dtimes, 'distance': distance, 'model_values': model_vals, 'model_lons': model_lons, 'model_lats': model_lats, 'obs_values': obs_vals, 'obs_lons': obs_lons, 'obs_lats': obs_lats, 'collocation_idx_x': collocation_idx_x, 'collocation_idx_y': collocation_idx_y } return results_dict
def match_region_poly(LATS, LONS, region, grid_date): """ Takes care of region defined as polygon """ from matplotlib.patches import Polygon from matplotlib.path import Path import numpy as np if (region not in region_dict['poly'] \ and region not in model_dict): sys.exit("Region polygone is not defined") elif isinstance(region, dict) == True: print("Manuall specified region: \n" + " --> Bounds: " + str(region)) poly = Polygon(list(zip(region['lons'], region['lats'])), closed=True) elif (isinstance(region, str) == True and region in model_dict): try: print('Use date for retrieving grid: ', grid_date) filestr = make_model_filename_wrapper(\ region,grid_date,'best') meta = ncdumpMeta(filestr) flon = get_filevarname('lons',variable_info,\ model_dict[region],meta) flat = get_filevarname('lats',variable_info,\ model_dict[region],meta) time = get_filevarname('time',variable_info,\ model_dict[region],meta) #M = xa.open_dataset(filestr, decode_cf=True) #model_lons = M[flon].data #model_lats = M[flat].data model_lons, model_lats, _ = \ read_model_nc_output_lru(filestr,flon,flat,time) except (KeyError, IOError, ValueError) as e: print(e) if 'grid_date' in model_dict[region]: grid_date = model_dict[region]['grid_date'] print('Trying default date ', grid_date) else: grid_date = datetime(datetime.now().year, datetime.now().month, datetime.now().day) filestr = make_model_filename_wrapper(\ region,grid_date,'best') meta = ncdumpMeta(filestr) flon = get_filevarname('lons',variable_info,\ model_dict[region],meta) flat = get_filevarname('lats',variable_info,\ model_dict[region],meta) time = get_filevarname('time',variable_info,\ model_dict[region],meta) #M = xa.open_dataset(filestr, decode_cf=True) #model_lons = M[flon].data #model_lats = M[flat].data model_lons, model_lats, _ = \ read_model_nc_output_lru(filestr,flon,flat,time) if (len(model_lons.shape) == 1): model_lons, model_lats = np.meshgrid(model_lons, model_lats) print('Check if footprints fall within the chosen domain') ncdict = ncdumpMeta(filestr) try: proj4 = find_attr_in_nc('proj', ncdict=ncdict, subattrstr='proj4') except IndexError: print('proj4 not defined in netcdf-file') print('Using proj4 from model config file') proj4 = model_dict[region]['proj4'] proj_model = pyproj.Proj(proj4) Mx, My = proj_model(model_lons, model_lats, inverse=False) Vx, Vy = proj_model(LONS, LATS, inverse=False) xmax, xmin = np.max(Mx), np.min(Mx) ymax, ymin = np.max(My), np.min(My) ridx = list( np.where((Vx > xmin) & (Vx < xmax) & (Vy > ymin) & (Vy < ymax))[0]) elif isinstance(region, str) == True: print("Specified region: " + region + "\n" + " --> Bounded by polygon: \n" + "lons: " + str(region_dict['poly'][region]['lons']) + "\n" + "lats: " + str(region_dict['poly'][region]['lats'])) poly = Polygon(list( zip(region_dict['poly'][region]['lons'], region_dict['poly'][region]['lats'])), closed=True) # check if coords in region LATS = list(LATS) LONS = list(LONS) lats = np.array(LATS).ravel() lons = np.array(LONS).ravel() points = np.c_[lons, lats] # radius seems to be important to correctly define polygone # see discussion here: # https://github.com/matplotlib/matplotlib/issues/9704 hits = Path(poly.xy).contains_points(points, radius=1e-9) ridx = list(np.array(range(len(LONS)))[hits]) if not ridx: print("No values for chosen region and time frame!!!") else: print("Values found for chosen region and time frame.") return ridx
def __init__(self, sdate=None, mission='s3a', product='cmems_L3_NRT', edate=None, twin=30, download=False, path_local=None, region='mwam4', nproc=1, varalias='Hs', api_url=None, filterData=False, poi=None, distlim=None, **kwargs): print('# ----- ') print(" ### Initializing satellite_class object ###") print(" ") # parse and translate date input sdate = parse_date(sdate) edate = parse_date(edate) # check settings if (sdate is None and edate is None and poi is not None): sdate = poi['datetime'][0] edate = poi['datetime'][-1] elif (edate is None and sdate is not None): print("Requested time: ", str(sdate)) edate = sdate elif (edate is None and sdate is None): now = datetime.now() sdate = datetime(now.year, now.month, now.day, now.hour) edate = sdate print("Requested time: ", str(sdate)) else: print("Requested time frame: " + str(sdate) + " - " + str(edate)) stdname = variable_info[varalias].get('standard_name') units = variable_info[varalias].get('units') # define some class variables self.sdate = sdate self.edate = edate self.varalias = varalias self.units = units self.stdvarname = stdname self.twin = twin self.region = region self.mission = mission self.obstype = 'satellite_altimeter' self.product = product self.provider = satellite_dict[product].get('provider') self.processing_level = \ satellite_dict[product].get('processing_level') print('Chosen time window is:', twin, 'min') # make satpaths if path_local is None: path_template = satellite_dict[product]\ ['dst']\ ['path_template'] self.path_local = path_template else: self.path_local = path_local # retrieve files if download is False: print("No download initialized, checking local files") else: print("Downloading necessary files ...") get_remote_files(\ path_local=path_local, sdate=sdate,edate=edate, twin=twin,nproc=nproc, product=product, api_url=api_url, mission=mission, dict_for_sub=vars(self)) print(" ") print(" ## Find files ...") t0 = time.time() pathlst, _ = get_local_files(sdate, edate, twin, product, vars(self), path_local=path_local) print(" ") print(" ## Read files ...") if len(pathlst) > 0: # for i in range(1): try: if filterData == True: # extend time period due to filter if 'stwin' not in kwargs.keys(): kwargs['stwin'] = 1 # needs to be changed if 'etwin' not in kwargs.keys(): kwargs['etwin'] = 1 twin_tmp = twin + kwargs['stwin'] + kwargs['etwin'] # retrieve data rvardict = get_sat_ts(sdate, edate, twin_tmp, region, product, pathlst, varalias, poi, distlim) # filter data rvardict = filter_main(rvardict, varalias=varalias, **kwargs) # crop to original time period sdate_tmp = sdate - timedelta(minutes=twin) edate_tmp = sdate + timedelta(minutes=twin) rvardict = crop_vardict_to_period(rvardict, sdate_tmp, edate_tmp) self.filter = True self.filterSpecs = kwargs else: rvardict = get_sat_ts(sdate, edate, twin, region, product, pathlst, varalias, poi, distlim) # make ts in vardict unique rvardict = vardict_unique(rvardict) # rm NaNs rvardict = rm_nan_from_vardict(varalias, rvardict) # find variable name as defined in file if (product == 'cmems_L3_NRT' or product == 'cmems_L3_MY' or product == 'cmems_L3_s6a'): ncdict = ncdumpMeta(pathlst[0]) elif (product == 'cci_L2P' or product == 'cci_L3'): ncdict = ncdumpMeta(pathlst[0]) elif product == 'eumetsat_L2': tmpdir = tempfile.TemporaryDirectory() zipped = zipfile.ZipFile(pathlst[0]) enhanced_measurement = zipped.namelist()[-1] extracted = zipped.extract(enhanced_measurement, path=tmpdir.name) ncdict = ncdumpMeta(extracted) tmpdir.cleanup() with NoStdStreams(): filevarname = get_filevarname(varalias, variable_info, satellite_dict[product], ncdict) rvardict['meta'] = ncdict # define more class variables self.vars = rvardict self.varname = filevarname t1 = time.time() print(" ") print('## Summary:') print(str(len(self.vars['time'])) + " footprints retrieved.") print("Time used for retrieving satellite data:",\ round(t1-t0,2),"seconds") print(" ") print("### Satellite object initialized ###") print('# ----- ') except Exception as e: print(e) print('Error encountered') print('No satellite_class object initialized') else: print('No satellite data found') print('No satellite_class object initialized') print('# ----- ')
def read_local_files_eumetsat(**kwargs): ''' Read and concatenate all data to one timeseries for each variable. Fct is tailored to EUMETSAT files. ''' pathlst = kwargs.get('pathlst') product = kwargs.get('product') varalias = kwargs.get('varalias') sdate = kwargs.get('sdate') edate = kwargs.get('edate') twin = kwargs.get('twin') # adjust start and end sdate = sdate - timedelta(minutes=twin) edate = edate + timedelta(minutes=twin) # --- find variable cf names --- # print("Processing " + str(int(len(pathlst))) + " files") print(pathlst[0]) print(pathlst[-1]) # --- find ncvar cf names --- # tmpdir = tempfile.TemporaryDirectory() zipped = zipfile.ZipFile(pathlst[0]) enhanced_measurement = zipped.namelist()[-1] extracted = zipped.extract(enhanced_measurement, path=tmpdir.name) stdvarname = variable_info[varalias]['standard_name'] ncmeta = ncdumpMeta(extracted) ncvar = get_filevarname(varalias, variable_info, satellite_dict[product], ncmeta) latname = get_filevarname('lats', variable_info, satellite_dict[product], ncmeta) lonname = get_filevarname('lons', variable_info, satellite_dict[product], ncmeta) timename = get_filevarname('time', variable_info, satellite_dict[product], ncmeta) tmpdir.cleanup() # --- create vardict --- # vardict = {} ds = read_netcdfs_zipped_lru(pathlst, ncvar, dim=timename) ds_sort = ds.sortby(timename) ds_sliced = ds_sort.sel({timename: slice(sdate, edate)}) # make dict and start with stdvarname for varalias var_sliced = ds_sliced[ncvar] vardict = {} vardict[stdvarname] = list(var_sliced.values) # add coords to vardict # 1. retrieve list of coordinates coords_lst = list(var_sliced.coords.keys()) # 2. iterate over coords_lst for varname in coords_lst: stdcoordname = ds_sliced[varname].attrs['standard_name'] if stdcoordname == 'longitude': vardict[stdcoordname] = \ list(((ds_sliced[varname].values - 180) % 360) - 180) elif stdcoordname == 'time': # convert to unixtime df_time = ds_sliced[varname].to_dataframe() unxt = (pd.to_datetime(df_time[varname]).view(int) / 10**9) vardict[stdcoordname] = unxt.values vardict['time_unit'] = variable_info[stdcoordname]['units'] else: vardict[stdcoordname] = list(ds_sliced[varname].values) return vardict
def get_nc_dict(**kwargs): sdate = kwargs.get('sdate') edate = kwargs.get('edate') nID = kwargs.get('nID') #sensor = kwargs.get('sensor') varalias = kwargs.get('varalias') pathlst = kwargs.get('pathlst') strsublst = kwargs.get('strsublst') dict_for_sub = kwargs.get('dict_for_sub') # loop from sdate to edate with dateincr stdvarname = variable_info[varalias]['standard_name'] tmpdate = deepcopy(sdate) varlst = [] lonlst = [] latlst = [] timelst = [] dtimelst = [] # make subdict subdict = make_subdict(strsublst,class_object_dict=dict_for_sub) while datetime(tmpdate.year,tmpdate.month,1)\ <= datetime(edate.year,edate.month,1): # get pathtofile pathtofile = get_pathtofile(pathlst,strsublst,\ subdict,tmpdate) # get ncdump ncdict = ncdumpMeta(pathtofile) # retrieve filevarname for varalias filevarname = get_filevarname(varalias, variable_info, insitu_dict[nID], ncdict) varstrlst = [filevarname,'longitude','latitude','time'] # query vardict = get_varlst_from_nc_1D(pathtofile, varstrlst, sdate,edate) varlst.append(list(vardict[filevarname])) lonlst.append(list(vardict['longitude'])) latlst.append(list(vardict['latitude'])) timelst.append(list(vardict['time'])) dtimelst.append(list(vardict['dtime'])) # determine date increment file_date_incr = insitu_dict[nID]['src'].get('file_date_incr','m') if file_date_incr == 'm': tmpdate += relativedelta(months = +1) elif file_date_incr == 'Y': tmpdate += relativedelta(years = +1) elif file_date_incr == 'd': tmpdate += timedelta(days = +1) varlst = flatten(varlst) lonlst = flatten(lonlst) latlst = flatten(latlst) timelst = flatten(timelst) dtimelst = flatten(dtimelst) vardict = { stdvarname:varlst, 'time':timelst, 'datetime':dtimelst, 'time_unit':variable_info['time']['units'], 'longitude':lonlst, 'latitude':latlst } return vardict
def __init__(self,nID,sensor,sdate,edate,varalias='Hs', filterData=False,**kwargs): # parse and translate date input sdate = parse_date(sdate) edate = parse_date(edate) print('# ----- ') print(" ### Initializing insitu_class object ###") print(" ") print ('Chosen period: ' + str(sdate) + ' - ' + str(edate)) stdvarname = variable_info[varalias]['standard_name'] # for i in range(1): try: self.stdvarname = stdvarname self.varalias = varalias self.units = variable_info[varalias].get('units') self.sdate = sdate self.edate = edate self.nID = nID self.sensor = sensor self.obstype = 'insitu' if ('tags' in insitu_dict[nID].keys() and len(insitu_dict[nID]['tags'])>0): self.tags = insitu_dict[nID]['tags'] print(" ") print(" ## Read files ...") t0=time.time() if filterData == False: vardict, fifo, pathtofile = \ get_insitu_ts(\ nID = nID, sensor = sensor, sdate = sdate, edate = edate, varalias = varalias, basedate = self.basedate, dict_for_sub = vars(self), **kwargs) elif filterData == True: # determine start and end date if 'stwin' not in kwargs.keys(): kwargs['stwin'] = 3 if 'etwin' not in kwargs.keys(): kwargs['etwin'] = 0 sdate_new = sdate - timedelta(hours=kwargs['stwin']) edate_new = edate + timedelta(hours=kwargs['etwin']) tmp_vardict, fifo, pathtofile = \ get_insitu_ts( nID = nID, sensor = sensor, sdate = sdate_new, edate = edate_new, varalias = varalias, basedate = self.basedate, dict_for_sub = vars(self), **kwargs) vardict = filter_main(tmp_vardict, varalias=varalias, **kwargs) # cut to original sdate and edate time_cut = np.array(vardict['time'])[ \ ( (np.array(vardict['datetime'])>=sdate) & (np.array(vardict['datetime'])<=edate) ) ] var_cut = np.array(vardict[stdvarname])[ \ ( (np.array(vardict['datetime'])>=sdate) & (np.array(vardict['datetime'])<=edate) ) ] lon_cut = np.array(vardict['longitude'])[ \ ( (np.array(vardict['datetime'])>=sdate) & (np.array(vardict['datetime'])<=edate) ) ] lat_cut = np.array(vardict['latitude'])[ \ ( (np.array(vardict['datetime'])>=sdate) & (np.array(vardict['datetime'])<=edate) ) ] dtime_cut = np.array(vardict['datetime'])[ \ ( (np.array(vardict['datetime'])>=sdate) & (np.array(vardict['datetime'])<=edate)) ] vardict['time'] = list(time_cut) vardict['datetime'] = list(dtime_cut) vardict[stdvarname] = list(var_cut) vardict['longitude'] = list(lon_cut) vardict['latitude'] = list(lat_cut) self.filter = True self.filterSpecs = kwargs self.vars = vardict self.lat = np.nanmean(vardict['latitude']) self.lon = np.nanmean(vardict['longitude']) if fifo == 'nc': print(pathtofile) meta = ncdumpMeta(sdate.strftime(pathtofile)) self.vars['meta'] = meta varname = get_filevarname(varalias, variable_info, insitu_dict[nID], meta) self.varname = varname else: self.varname = varalias if fifo == 'frost': self.sensor = sensor t1=time.time() print(" ") print( '## Summary:') print(str(len(self.vars['time'])) + " values retrieved.") print("Time used for retrieving insitu data:",\ round(t1-t0,2),"seconds") print(" ") print (" ### insitu_class object initialized ### ") except Exception as e: print(e) self.error = e print ("! No insitu_class object initialized !") print ('# ----- ')