def __init__(self, haar_filters, data, labels, num_chosen_wc, num_bins, visualizer, num_cores, style, save_dir): self.filters = haar_filters self.data = data self.labels = labels self.num_chosen_wc = num_chosen_wc self.num_bins = num_bins self.visualizer = visualizer self.num_cores = num_cores self.style = style self.chosen_wcs = None if style == 'Ada': self.weak_classifiers = [Ada_Weak_Classifier(i, filt[0], filt[1], self.num_bins) \ for i, filt in enumerate(self.filters)] elif style == 'Real': if save_dir is not None and os.path.exists(save_dir): print( '[Loading chosen weak classifiers from Adaboost, %s loading...]' % save_dir) self.load_trained_wcs(save_dir) else: print("Chosen classifiers not found") return self.chosen_classifiers_from_AB = np.array(self.chosen_wcs)[:, 1] self.weak_classifiers = [ Real_Weak_Classifier( i, self.chosen_classifiers_from_AB[i].plus_rects, self.chosen_classifiers_from_AB[i].minus_rects, self.num_bins) for i in range(len(self.chosen_classifiers_from_AB)) ]
def __init__(self, haar_filters, data, labels, num_chosen_wc, num_bins, visualizer, num_cores, style): self.filters = haar_filters self.data = data self.labels = labels self.num_chosen_wc = num_chosen_wc self.num_bins = num_bins self.visualizer = visualizer self.num_cores = num_cores self.style = style self.chosen_wcs = [] if style == 'Ada': self.weak_classifiers = [Ada_Weak_Classifier(i, filt[0], filt[1], self.num_bins)\ for i, filt in enumerate(self.filters)] elif style == 'Real': self.weak_classifiers = [Real_Weak_Classifier(i, filt[0], filt[1], self.num_bins)\ for i, filt in enumerate(self.filters)]