PROJECT_HOME = os.path.dirname(os.path.abspath(__file__)) + "/../" sys.path.append(PROJECT_HOME) from webapp.recommend.svm import SVM model = SVM() ## load test data data_filepath = os.path.dirname( __file__) + "/../../resources/data/test-data.tsv" labels_filepath = os.path.dirname( __file__) + "/../../resources/data/test-label.tsv" data = model.load_tsv_file(data_filepath) labels = model.load_tsv_file(labels_filepath) ## restore model from file result = model.predict_with_default_dumped_model(data) num_true = 0 num_false = 0 for i in range(0, len(labels)): if labels[i] == result[i]: num_true += 1 else: num_false += 1 print("# trues : %d" % (num_true)) print("# falses: %d" % (num_false)) print("accurary: %f" % (num_true / (num_true + num_false)))
def test_predict_with_default_dumped_model(): model = SVM() target = [0, 2, 1] result = model.predict_with_default_dumped_model(target) assert_equal(result, [3])