def run_rpc(self, *, user_prompt: UserPrompt, method_name: str, arguments: JsonObject) -> Optional[UsageError]:
        if(method_name == "set_live_update"):
            live_update = ensureJsonBoolean(arguments.get("live_update"))
            result = self.set_live_update(user_prompt=user_prompt, live_update=live_update)
            if isinstance(result, CascadeError):
                return UsageError(result.message)
            return None

        raise ValueError(f"Invalid method name: '{method_name}'")
示例#2
0
    def run_rpc(self, *, user_prompt: UserPrompt, method_name: str,
                arguments: JsonObject) -> Optional[UsageError]:
        raw_feature_array = ensureJsonArray(
            arguments.get("feature_extractors"))
        feature_extractors = [
            IlpFilter.from_json_value(raw_feature)
            for raw_feature in raw_feature_array
        ]

        if method_name == "add_feature_extractors":
            return UsageError.check(
                self.add_feature_extractors(
                    user_prompt=user_prompt,
                    feature_extractors=feature_extractors))
        if method_name == "remove_feature_extractors":
            return UsageError.check(
                self.remove_feature_extractors(user_prompt,
                                               feature_extractors))
        raise ValueError(f"Invalid method name: '{method_name}'")
示例#3
0
    def start_simple_segmentation_export_job(
            self, *, datasource: DataSource,
            datasinks: Sequence[DataSink]) -> "UsageError | None":
        classifier = self._in_operator()
        if classifier is None:
            return UsageError("Upstream not ready yet")
        if len(datasinks) != classifier.num_classes:
            return UsageError(
                f"Wrong number of datasinks. Expected {classifier.num_classes} but got {len(datasinks)}"
            )
        expected_shape = datasource.shape.updated(c=3)
        if any(sink.shape != expected_shape for sink in datasinks):
            return UsageError(
                "All data sinks should have 3 channels for this kind of export"
            )
        if any(sink.dtype != np.dtype("uint8") for sink in datasinks):
            return UsageError(
                "All data sinks should have dtype of uint8 for this kind of export"
            )

        def launch_export_job(job_id: uuid.UUID,
                              result: "Exception | Sequence[DataSinkWriter]"):
            if isinstance(result, Exception):
                raise result
            self._remove_job(job_id)
            _ = self._create_job(
                name=f"Simple Segmentation Export Job",
                target=ExportAsSimpleSegmentationTask(operator=classifier,
                                                      sink_writers=result),
                args=datasource.roi.get_datasource_tiles(
                ),  #FIXME: use sink tile_size
                num_args=datasource.roi.get_num_tiles(
                    tile_shape=datasource.tile_shape),
            )

        _ = self._create_job(
            name=f"Creating datasinks",
            target=_create_datasinks,
            args=[datasinks],
            num_args=1,  #FIXME: maybe one per datasink?
            on_success=launch_export_job,
        )
示例#4
0
    def start_export_job(self, *, datasource: DataSource,
                         datasink: DataSink) -> "UsageError | None":
        classifier = self._in_operator()
        if classifier is None:
            return UsageError("Upstream not ready yet")
        expected_shape = datasource.shape.updated(c=classifier.num_classes)
        if datasink.shape != expected_shape:
            return UsageError(
                f"Bad sink shape. Expected {expected_shape} but got {datasink.shape}"
            )
        if datasink.dtype != np.dtype("float32"):
            return UsageError(
                "Data sink should have dtype of float32 for this kind of export"
            )

        def launch_export_job(job_id: uuid.UUID,
                              result: "Exception | DataSinkWriter"):
            if isinstance(result, BaseException):
                raise result  #FIXME?
            self._remove_job(job_id)
            _ = self._create_job(
                name=f"Export Job",
                target=ExportTask(operator=classifier, sink_writer=result),
                args=datasource.roi.get_datasource_tiles(
                ),  #FIXME: use sink tile_size
                num_args=datasource.roi.get_num_tiles(
                    tile_shape=datasource.tile_shape),
            )

        _ = self._create_job(
            name=f"Creating datasink",
            target=_create_datasink,
            args=[datasink],
            num_args=1,
            on_success=launch_export_job,
            # on_failure=lambda exception: self._remove_job(sink_creation_job.uuid)
        )
示例#5
0
    def run_rpc(self, *, user_prompt: UserPrompt, method_name: str,
                arguments: JsonObject) -> "UsageError | None":
        if method_name == "recolor_label":
            return UsageError.check(
                self.recolor_label(user_prompt,
                                   label_name=ensureJsonString(
                                       arguments.get("label_name")),
                                   new_color=Color.from_json_data(
                                       arguments.get("new_color"))))

        if method_name == "rename_label":
            return UsageError.check(
                self.rename_label(
                    user_prompt,
                    old_name=ensureJsonString(arguments.get("old_name")),
                    new_name=ensureJsonString(arguments.get("new_name"))))

        if method_name == "create_label":
            return UsageError.check(
                self.create_label(
                    user_prompt=user_prompt,
                    label_name=ensureJsonString(arguments.get("label_name")),
                    color=Color.from_json_data(arguments.get("color")),
                ))

        if method_name == "remove_label":
            return UsageError.check(
                self.remove_label(
                    user_prompt=user_prompt,
                    label_name=ensureJsonString(arguments.get("label_name")),
                ))

        if method_name == "add_annotation":
            return UsageError.check(
                self.add_annotation(
                    user_prompt,
                    label_name=ensureJsonString(arguments.get("label_name")),
                    annotation=Annotation.from_json_value(
                        arguments.get("annotation")),
                ))
        if method_name == "remove_annotation":
            return UsageError.check(
                self.remove_annotation(
                    user_prompt,
                    label_name=ensureJsonString(arguments.get("label_name")),
                    annotation=Annotation.from_json_value(
                        arguments.get("annotation")),
                ))

        raise ValueError(f"Invalid method name: '{method_name}'")
示例#6
0
 def try_from_url(cls, url: Url) -> "HttpFs | UsageError":
     if url.protocol not in (Protocol.HTTP, Protocol.HTTPS):
         return UsageError(f"Bad url for HttpFs: {url}")
     return HttpFs(read_url=url)
示例#7
0
def parse_url(url: str) -> Union[Url, UsageError]:
    parsed_url = Url.parse(url)
    if parsed_url is None:
        return UsageError(f"Bad url: {url}")
    return parsed_url
示例#8
0
 def from_environment(cls) -> "UserToken | UsageError":
     access_token = os.environ.get(cls.ENV_VAR_NAME)
     if access_token is None:
         return UsageError(f"Environment variable '{cls.ENV_VAR_NAME}' is not set")
     return UserToken(access_token=access_token)