示例#1
0
    def predBtn_clicked(self):

        gender = self.gender_entry.get()
        age = int(self.age_entry.get())
        height = int(self.height_entry.get())
        weight = int(self.weight_entry.get())
        sociability = self.sociability_entry.get()
        stability = self.stability_entry.get()
        '''Create the model'''
        objects = serialization.read_all("J48.model")

        cls = Classifier(jobject=objects[0])
        data = Instances(jobject=objects[1])
        '''Create the test set to be classified'''
        gender_values = ["Man", "Woman"]
        sociability_values = ["Introvert", "Extrovert"]
        stability_values = ["Stable", "Unstable"]

        values = [
            gender_values.index(gender), age, height, weight,
            self.BMI(weight, height),
            stability_values.index(stability),
            sociability_values.index(sociability),
            Instance.missing_value()
        ]

        inst = Instance.create_instance(values)
        inst.dataset = data
        '''Classification'''
        prediction = int(cls.classify_instance(inst))
        self.controller.show_frame("Result").show(prediction)
        self.clear()
示例#2
0
def create_dataset(tweets):
    text_att = Attribute.create_string('TEXT')
    nom_att = Attribute.create_nominal('CLASS', class_values)
    dataset = Instances.create_instances("tweets", [text_att, nom_att],
                                         len(tweets))

    for tweet in tweets:
        values = []
        values.append(dataset.attribute(0).add_string_value(tweet))
        values.append(Instance.missing_value())
        inst = Instance.create_instance(values)
        dataset.add_instance(inst)

    dataset.class_is_last()

    return dataset
示例#3
0
    def transformUserInput(self,user_input):
        '''
        Transforma la entrada del usuario a una representación de 1s y 0s para poder realizar una predicción.

        :param str entrada del usuario
        :return str de 1s y 0s
        :rtype str
        '''
        attributes = self.data.attribute_names()
        data_size = len(attributes)
        vector_input = ['0']*(data_size)

        words = user_input.split()
        attribute_map = { attributes[i] : i for i in range(len(attributes)) }

        for word in words:
            if word in attributes:
                vector_input[attribute_map.get(word)] = '1'

        vector_input[data_size-1] = Instance.missing_value()

        return vector_input
def main():
    """
    Just runs some example code.
    """

    # load a dataset
    iris_file = helper.get_data_dir() + os.sep + "iris.arff"
    helper.print_info("Loading dataset: " + iris_file)
    loader = Loader("weka.core.converters.ArffLoader")
    iris_data = loader.load_file(iris_file)
    iris_data.class_is_last()
    helper.print_title("Iris dataset")
    print(iris_data)
    helper.print_title("Iris dataset (incrementally output)")
    for i in iris_data:
        print(i)
    helper.print_title("Iris summary")
    print(Instances.summary(iris_data))
    helper.print_title("Iris attributes")
    for a in iris_data.attributes():
        print(a)
    helper.print_title("Instance at #0")
    print(iris_data.get_instance(0))
    print(iris_data.get_instance(0).values)
    print("Attribute stats (first):\n" + str(iris_data.attribute_stats(0)))
    print("total count (first attribute):\n" + str(iris_data.attribute_stats(0).total_count))
    print("numeric stats (first attribute):\n" + str(iris_data.attribute_stats(0).numeric_stats))
    print("nominal counts (last attribute):\n"
          + str(iris_data.attribute_stats(iris_data.num_attributes - 1).nominal_counts))
    helper.print_title("Instance values at #0")
    for v in iris_data.get_instance(0):
        print(v)

    # append datasets
    helper.print_title("append datasets")
    data1 = Instances.copy_instances(iris_data, 0, 2)
    data2 = Instances.copy_instances(iris_data, 2, 2)
    print("Dataset #1:\n" + str(data1))
    print("Dataset #2:\n" + str(data2))
    msg = data1.equal_headers(data2)
    print("#1 == #2 ? " + "yes" if msg is None else msg)
    combined = Instances.append_instances(data1, data2)
    print("Combined:\n" + str(combined))

    # merge datasets
    helper.print_title("merge datasets")
    data1 = Instances.copy_instances(iris_data, 0, 2)
    data1.class_index = -1
    data1.delete_attribute(1)
    data1.delete_first_attribute()
    data2 = Instances.copy_instances(iris_data, 0, 2)
    data2.class_index = -1
    data2.delete_attribute(4)
    data2.delete_attribute(3)
    data2.delete_attribute(2)
    print("Dataset #1:\n" + str(data1))
    print("Dataset #2:\n" + str(data2))
    msg = data1.equal_headers(data2)
    print("#1 == #2 ? " + ("yes" if msg is None else msg))
    combined = Instances.merge_instances(data2, data1)
    print("Combined:\n" + str(combined))

    # load dataset incrementally
    iris_file = helper.get_data_dir() + os.sep + "iris.arff"
    helper.print_info("Loading dataset incrementally: " + iris_file)
    loader = Loader("weka.core.converters.ArffLoader")
    iris_data = loader.load_file(iris_file, incremental=True)
    iris_data.class_is_last()
    helper.print_title("Iris dataset")
    print(iris_data)
    for inst in loader:
        print(inst)

    # create attributes
    helper.print_title("Creating attributes")
    num_att = Attribute.create_numeric("num")
    print("numeric: " + str(num_att))
    date_att = Attribute.create_date("dat", "yyyy-MM-dd")
    print("date: " + str(date_att))
    nom_att = Attribute.create_nominal("nom", ["label1", "label2"])
    print("nominal: " + str(nom_att))

    # create dataset
    helper.print_title("Create dataset")
    dataset = Instances.create_instances("helloworld", [num_att, date_att, nom_att], 0)
    print(str(dataset))

    # create an instance
    helper.print_title("Create and add instance")
    values = [3.1415926, date_att.parse_date("2014-04-10"), 1.0]
    inst = Instance.create_instance(values)
    print("Instance #1:\n" + str(inst))
    dataset.add_instance(inst)
    values = [2.71828, date_att.parse_date("2014-08-09"), Instance.missing_value()]
    inst = Instance.create_instance(values)
    dataset.add_instance(inst)
    print("Instance #2:\n" + str(inst))
    inst.set_value(0, 4.0)
    print("Instance #2 (updated):\n" + str(inst))
    print("Dataset:\n" + str(dataset))
    dataset.delete_with_missing(2)
    print("Dataset (after delete of missing):\n" + str(dataset))
    values = [(1, date_att.parse_date("2014-07-11"))]
    inst = Instance.create_sparse_instance(values, 3, classname="weka.core.SparseInstance")
    print("sparse Instance:\n" + str(inst))
    dataset.add_instance(inst)
    print("dataset with mixed dense/sparse instance objects:\n" + str(dataset))

    # create dataset (lists)
    helper.print_title("Create dataset from lists")
    x = [[randint(1, 10) for _ in range(5)] for _ in range(10)]
    y = [randint(0, 1) for _ in range(10)]
    dataset2 = ds.create_instances_from_lists(x, y, "generated from lists")
    print(dataset2)
    x = [[randint(1, 10) for _ in range(5)] for _ in range(10)]
    dataset2 = ds.create_instances_from_lists(x, name="generated from lists (no y)")
    print(dataset2)

    # create dataset (matrices)
    helper.print_title("Create dataset from matrices")
    x = np.random.randn(10, 5)
    y = np.random.randn(10)
    dataset3 = ds.create_instances_from_matrices(x, y, "generated from matrices")
    print(dataset3)
    x = np.random.randn(10, 5)
    dataset3 = ds.create_instances_from_matrices(x, name="generated from matrices (no y)")
    print(dataset3)

    # create more sparse instances
    diabetes_file = helper.get_data_dir() + os.sep + "diabetes.arff"
    helper.print_info("Loading dataset: " + diabetes_file)
    loader = Loader("weka.core.converters.ArffLoader")
    diabetes_data = loader.load_file(diabetes_file)
    diabetes_data.class_is_last()
    helper.print_title("Create sparse instances using template dataset")
    sparse_data = Instances.template_instances(diabetes_data)
    for i in range(diabetes_data.num_attributes - 1):
        inst = Instance.create_sparse_instance(
            [(i, float(i+1) / 10.0)], sparse_data.num_attributes, classname="weka.core.SparseInstance")
        sparse_data.add_instance(inst)
    print("sparse dataset:\n" + str(sparse_data))

    # simple scatterplot of iris dataset: petalwidth x petallength
    iris_data = loader.load_file(iris_file)
    iris_data.class_is_last()
    pld.scatter_plot(
        iris_data, iris_data.attribute_by_name("petalwidth").index,
        iris_data.attribute_by_name("petallength").index,
        percent=50,
        wait=False)

    # line plot of iris dataset (without class attribute)
    iris_data = loader.load_file(iris_file)
    iris_data.class_is_last()
    pld.line_plot(iris_data, atts=range(iris_data.num_attributes - 1), percent=50, title="Line plot iris", wait=False)

    # matrix plot of iris dataset
    iris_data = loader.load_file(iris_file)
    iris_data.class_is_last()
    pld.matrix_plot(iris_data, percent=50, title="Matrix plot iris", wait=True)
def main():
    """
    Just runs some example code.
    """

    # load a dataset
    iris_file = helper.get_data_dir() + os.sep + "iris.arff"
    helper.print_info("Loading dataset: " + iris_file)
    loader = Loader("weka.core.converters.ArffLoader")
    iris_data = loader.load_file(iris_file)
    iris_data.class_is_last()
    helper.print_title("Iris dataset")
    print(iris_data)
    helper.print_title("Iris dataset (incrementally output)")
    for i in iris_data:
        print(i)
    helper.print_title("Iris summary")
    print(Instances.summary(iris_data))
    helper.print_title("Iris attributes")
    for a in iris_data.attributes():
        print(a)
    helper.print_title("Instance at #0")
    print(iris_data.get_instance(0))
    print(iris_data.get_instance(0).values)
    print("Attribute stats (first):\n" + str(iris_data.attribute_stats(0)))
    print("total count (first attribute):\n" +
          str(iris_data.attribute_stats(0).total_count))
    print("numeric stats (first attribute):\n" +
          str(iris_data.attribute_stats(0).numeric_stats))
    print("nominal counts (last attribute):\n" + str(
        iris_data.attribute_stats(iris_data.num_attributes -
                                  1).nominal_counts))
    helper.print_title("Instance values at #0")
    for v in iris_data.get_instance(0):
        print(v)

    # append datasets
    helper.print_title("append datasets")
    data1 = Instances.copy_instances(iris_data, 0, 2)
    data2 = Instances.copy_instances(iris_data, 2, 2)
    print("Dataset #1:\n" + str(data1))
    print("Dataset #2:\n" + str(data2))
    msg = data1.equal_headers(data2)
    print("#1 == #2 ? " + "yes" if msg is None else msg)
    combined = Instances.append_instances(data1, data2)
    print("Combined:\n" + str(combined))

    # merge datasets
    helper.print_title("merge datasets")
    data1 = Instances.copy_instances(iris_data, 0, 2)
    data1.class_index = -1
    data1.delete_attribute(1)
    data1.delete_first_attribute()
    data2 = Instances.copy_instances(iris_data, 0, 2)
    data2.class_index = -1
    data2.delete_attribute(4)
    data2.delete_attribute(3)
    data2.delete_attribute(2)
    print("Dataset #1:\n" + str(data1))
    print("Dataset #2:\n" + str(data2))
    msg = data1.equal_headers(data2)
    print("#1 == #2 ? " + ("yes" if msg is None else msg))
    combined = Instances.merge_instances(data2, data1)
    print("Combined:\n" + str(combined))

    # load dataset incrementally
    iris_file = helper.get_data_dir() + os.sep + "iris.arff"
    helper.print_info("Loading dataset incrementally: " + iris_file)
    loader = Loader("weka.core.converters.ArffLoader")
    iris_data = loader.load_file(iris_file, incremental=True)
    iris_data.class_is_last()
    helper.print_title("Iris dataset")
    print(iris_data)
    for inst in loader:
        print(inst)

    # create attributes
    helper.print_title("Creating attributes")
    num_att = Attribute.create_numeric("num")
    print("numeric: " + str(num_att))
    date_att = Attribute.create_date("dat", "yyyy-MM-dd")
    print("date: " + str(date_att))
    nom_att = Attribute.create_nominal("nom", ["label1", "label2"])
    print("nominal: " + str(nom_att))

    # create dataset
    helper.print_title("Create dataset")
    dataset = Instances.create_instances("helloworld",
                                         [num_att, date_att, nom_att], 0)
    print(str(dataset))

    # create an instance
    helper.print_title("Create and add instance")
    values = [3.1415926, date_att.parse_date("2014-04-10"), 1.0]
    inst = Instance.create_instance(values)
    print("Instance #1:\n" + str(inst))
    dataset.add_instance(inst)
    values = [
        2.71828,
        date_att.parse_date("2014-08-09"),
        Instance.missing_value()
    ]
    inst = Instance.create_instance(values)
    dataset.add_instance(inst)
    print("Instance #2:\n" + str(inst))
    inst.set_value(0, 4.0)
    print("Instance #2 (updated):\n" + str(inst))
    print("Dataset:\n" + str(dataset))
    dataset.delete_with_missing(2)
    print("Dataset (after delete of missing):\n" + str(dataset))
    values = [(1, date_att.parse_date("2014-07-11"))]
    inst = Instance.create_sparse_instance(
        values, 3, classname="weka.core.SparseInstance")
    print("sparse Instance:\n" + str(inst))
    dataset.add_instance(inst)
    print("dataset with mixed dense/sparse instance objects:\n" + str(dataset))

    # create dataset (lists)
    helper.print_title("Create dataset from lists")
    x = [[randint(1, 10) for _ in range(5)] for _ in range(10)]
    y = [randint(0, 1) for _ in range(10)]
    dataset2 = ds.create_instances_from_lists(x, y, "generated from lists")
    print(dataset2)
    x = [[randint(1, 10) for _ in range(5)] for _ in range(10)]
    dataset2 = ds.create_instances_from_lists(
        x, name="generated from lists (no y)")
    print(dataset2)

    # create dataset (matrices)
    helper.print_title("Create dataset from matrices")
    x = np.random.randn(10, 5)
    y = np.random.randn(10)
    dataset3 = ds.create_instances_from_matrices(x, y,
                                                 "generated from matrices")
    print(dataset3)
    x = np.random.randn(10, 5)
    dataset3 = ds.create_instances_from_matrices(
        x, name="generated from matrices (no y)")
    print(dataset3)

    # create more sparse instances
    diabetes_file = helper.get_data_dir() + os.sep + "diabetes.arff"
    helper.print_info("Loading dataset: " + diabetes_file)
    loader = Loader("weka.core.converters.ArffLoader")
    diabetes_data = loader.load_file(diabetes_file)
    diabetes_data.class_is_last()
    helper.print_title("Create sparse instances using template dataset")
    sparse_data = Instances.template_instances(diabetes_data)
    for i in xrange(diabetes_data.num_attributes - 1):
        inst = Instance.create_sparse_instance(
            [(i, float(i + 1) / 10.0)],
            sparse_data.num_attributes,
            classname="weka.core.SparseInstance")
        sparse_data.add_instance(inst)
    print("sparse dataset:\n" + str(sparse_data))

    # simple scatterplot of iris dataset: petalwidth x petallength
    iris_data = loader.load_file(iris_file)
    iris_data.class_is_last()
    pld.scatter_plot(iris_data,
                     iris_data.attribute_by_name("petalwidth").index,
                     iris_data.attribute_by_name("petallength").index,
                     percent=50,
                     wait=False)

    # line plot of iris dataset (without class attribute)
    iris_data = loader.load_file(iris_file)
    iris_data.class_is_last()
    pld.line_plot(iris_data,
                  atts=xrange(iris_data.num_attributes - 1),
                  percent=50,
                  title="Line plot iris",
                  wait=False)

    # matrix plot of iris dataset
    iris_data = loader.load_file(iris_file)
    iris_data.class_is_last()
    pld.matrix_plot(iris_data, percent=50, title="Matrix plot iris", wait=True)
示例#6
0
#classifier.classify_instance(inst=data.get_instance(index=4))

# In[4]:

from weka.core import dataset
from weka.core.dataset import Instance

# In[5]:

age, gender, mar_stat, ocd_hist, q2, q5, q10, q12, q13, q15, q17 = input(
    "Input list here : ").split(" ")

# In[6]:

x = [age, gender, mar_stat, ocd_hist, q2, q5, q10, q12, q13, q15, q17]
x.append(Instance.missing_value())
data.add_instance(inst=Instance.create_instance(x))
classify = classifier.classify_instance(inst=data.get_instance(
    index=data.num_instances - 1))
if (classify == 0.0):
    print("No OCD")
else:
    print("OCD")

# In[7]:

#print(data)

# In[8]:

jvm.stop()
示例#7
0
def train(request):

    jvm.start()

    d_att1 = Attribute.create_numeric("bodydearword.feature")
    d_att2 = Attribute.create_numeric("bodyform.feature")
    d_att3 = Attribute.create_numeric("bodyhtml.feature")
    d_att4 = Attribute.create_numeric("bodymultipart.feature")
    d_att5 = Attribute.create_numeric("bodynumchars.feature")
    d_att6 = Attribute.create_numeric("bodynumfunctionwords.feature")
    d_att7 = Attribute.create_numeric("bodynumuniqwords.feature")
    d_att8 = Attribute.create_numeric("bodynumwords.feature")
    d_att9 = Attribute.create_numeric("bodyrichness.feature")
    d_att10 = Attribute.create_numeric("bodysuspensionword.feature")
    d_att11 = Attribute.create_numeric("bodyverifyyouraccountphrase.feature")
    d_att12 = Attribute.create_numeric("externalsabinary.feature")
    d_att13 = Attribute.create_numeric("externalsascore.feature")
    d_att14 = Attribute.create_numeric("scriptjavascript.feature")
    d_att15 = Attribute.create_numeric("scriptonclick.feature")
    d_att16 = Attribute.create_numeric("scriptpopup.feature")
    d_att17 = Attribute.create_numeric("scriptstatuschange.feature")
    d_att18 = Attribute.create_numeric("scriptunmodalload.feature")
    d_att19 = Attribute.create_numeric("senddiffreplyto.feature")
    d_att20 = Attribute.create_numeric("sendnumwords.feature")
    d_att21 = Attribute.create_numeric("sendunmodaldomain.feature")
    d_att22 = Attribute.create_numeric("subjectbankword.feature")
    d_att23 = Attribute.create_numeric("subjectdebitword.feature")
    d_att24 = Attribute.create_numeric("subjectfwdword.feature")
    d_att25 = Attribute.create_numeric("subjectnumchars.feature")
    d_att26 = Attribute.create_numeric("subjectnumwords.feature")
    d_att27 = Attribute.create_numeric("subjectreplyword.feature")
    d_att28 = Attribute.create_numeric("subjectrichness.feature")
    d_att29 = Attribute.create_numeric("subjectverifyword.feature")
    d_att30 = Attribute.create_numeric("urlatchar.feature")
    d_att31 = Attribute.create_numeric("urlbaglink.feature")
    d_att32 = Attribute.create_numeric("urlip.feature")
    d_att33 = Attribute.create_numeric("urlnumdomains.feature")
    d_att34 = Attribute.create_numeric("urlnumexternallink.feature")
    d_att35 = Attribute.create_numeric("urlnumimagelink.feature")
    d_att36 = Attribute.create_numeric("urlnuminternallink.feature")
    d_att37 = Attribute.create_numeric("urlnumip.feature")
    d_att38 = Attribute.create_numeric("urlnumlink.feature")
    d_att39 = Attribute.create_numeric("urlnumperiods.feature")
    d_att40 = Attribute.create_numeric("urlnumport.feature")
    d_att41 = Attribute.create_numeric("urlport.feature")
    d_att42 = Attribute.create_numeric("urltwodoains.feature")
    d_att43 = Attribute.create_numeric("urlunmodalbaglink.feature")
    d_att44 = Attribute.create_numeric("urlwordclicklink.feature")
    d_att45 = Attribute.create_numeric("urlwordherelink.feature")
    d_att46 = Attribute.create_numeric("urlwordloginlink.feature")
    d_att47 = Attribute.create_numeric("urlwordupdatelink.feature")
    d_att48 = Attribute.create_nominal("class", {'phish', 'ham'})
    #
    data_dir = settings.BASE_DIR + "/phishing/public/datasets/"
    #
    loader = Loader(classname="weka.core.converters.ArffLoader")
    data = loader.load_file(data_dir + "dataset.arff")
    data.class_is_last()
    cls = Classifier(classname="weka.classifiers.trees.J48")
    cls.options = ["-C", "0.3"]
    cls.build_classifier(data)

    serialization.write(data_dir + "out.model", cls)
    classifier = Classifier(jobject=serialization.read(data_dir + "out.model"))

    dataset = Instances.create_instances("test", [
        d_att1, d_att2, d_att3, d_att4, d_att5, d_att6, d_att7, d_att8, d_att9,
        d_att10, d_att11, d_att12, d_att13, d_att14, d_att15, d_att16, d_att17,
        d_att18, d_att19, d_att20, d_att21, d_att22, d_att23, d_att24, d_att25,
        d_att26, d_att27, d_att28, d_att29, d_att30, d_att31, d_att32, d_att33,
        d_att34, d_att35, d_att36, d_att37, d_att38, d_att39, d_att40, d_att41,
        d_att42, d_att43, d_att44, d_att45, d_att46, d_att47, d_att48
    ], 0)
    values = [
        0, 0, 0, 0, 890, 1, 124, 198, 0.22247191011236, 0, 0, 0, 0.0, 0, 0, 0,
        0, 0, 1, 4, 0, 0, 0, 0, 21, 4, 1, 0.19047619047619, 0, 0, 0, 0, 2, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        Instance.missing_value()
    ]
    inst = Instance.create_instance(values)
    dataset.add_instance(inst)
    dataset.class_is_last()
    # print(str(dataset))
    var = ''
    for inst1 in dataset:
        pred = classifier.classify_instance(inst1)
        var = inst1.class_attribute.value(int(pred))
        if var == 'ham':
            print('No es pishing')
            # do somthing
        else:
            print('Es pishing')
            # do somthing

        print(var)

    jvm.stop()

    return HttpResponse(str(var))
fc.classifier = cls

fc.build_classifier(train_data)

# Create test data

class_att = Attribute.create_nominal("class", ["good", "neutral", "bad"])
str_att = Attribute.create_string("title")

test_dataset = Instances.create_instances(
    name="test_news_set",
    atts=[str_att, class_att],
    capacity=1
)

inst = Instance.create_instance([Instance.missing_value(), Instance.missing_value()])
test_dataset.add_instance(inst)
test_dataset.get_instance(0).set_string_value(0, article['processed']['title'])
test_dataset.class_is_last()

# Run classifier

article_instance = test_dataset.get_instance(0)
prediction = fc.classify_instance(article_instance)

article_type = article_instance.class_attribute.value(int(prediction))
if article_type is 'good' or 'neutral' or 'bad':
    articles_collection.update_one({
        "_id": article_id},
        {
            "$set": {