示例#1
0
 def residual_attention(x1):
     x2 = HierarchicalAttention(self.attention_heads)(x1)
     x2 = tf.keras.layers.Dropout(self.dropout)(x2)
     x2 = tf.keras.layers.LayerNormalization()(x2)
     if self.attention_heads == 'same':
         return tf.keras.layers.add([x1, x2])
     else:
         return x2
示例#2
0
 def residual_attention(x1):
     attention_heads = self.attention_heads
     if self.feature_approach == "multilabel-attention":
         attention_heads = self.nb_outputs
     print(f"Attention heads {attention_heads}")
     x2 = HierarchicalAttention(attention_heads)(x1)
     x2 = tf.keras.layers.Dropout(self.dropout)(x2)
     x2 = tf.keras.layers.LayerNormalization()(x2)
     if attention_heads == 'same':
         return tf.keras.layers.add([x1, x2])
     else:
         return x2