def test_multilabel_Y_list():
    X = [
        "One and two", "One only", "Three and four, nothing else",
        "Two nothing else", "Two and three"
    ]
    Y = [[1, 1, 0, 0], [1, 0, 0, 0], [0, 0, 1, 1], [0, 1, 0, 0], [0, 1, 1, 0]]

    model = SpacyClassifier()
    model.fit(X, Y)
    assert model.score(X, Y) > 0.3
    assert model.predict(X).shape == (5, 4)
def test_partial_fit():
    X = [
        "One and two", "One only", "Three and four, nothing else",
        "Two nothing else", "Two and three"
    ]
    Y = [[1, 1, 0, 0], [1, 0, 0, 0], [0, 0, 1, 1], [0, 1, 0, 0], [0, 1, 1, 0]]

    model = SpacyClassifier()
    for x, y in zip(X, Y):
        model.partial_fit([x], [y])
    assert model.score(X, Y) > 0.2
    assert model.predict(X).shape == (5, 4)
from wellcomeml.ml import SpacyClassifier

X = ["One, three", "one", "two, three"]
Y = [[1, 0, 1], [1, 0, 0], [0, 1, 1]]

spacy_classifier = SpacyClassifier()
spacy_classifier.fit(X, Y)
print(spacy_classifier.score(X, Y))