示例#1
0
def walkers_from_disk(n_expected_walkers=48, path='$WEST_SIM_ROOT/traj_segs/'):
    # find the last iteration that was completed; this is for emergency cases and other hacks
    path = os.path.expandvars(path)
    max_iteration = -1
    n_found_walkers = {}
    for topdir in [d for d in _get_dirs(path) if d.isdigit()]:
        iteration = int(topdir)
        subdirs = [d for d in _get_dirs(path + topdir) if d.isdigit()]
        if len(
                set([int(d) for d in subdirs])
                & set(range(n_expected_walkers))) == n_expected_walkers:
            max_iteration = max(max_iteration, iteration)
            n_found_walkers[iteration] = len(set([int(d) for d in subdirs]))
    if max_iteration == -1:
        raise RuntimeError('no valid iteration found')
    weights = np.ones(n_expected_walkers, dtype=float) / n_expected_walkers
    assert n_found_walkers[max_iteration] == n_expected_walkers
    walkers = [
        Walker(WestpaWalkerState.from_file(iteration=max_iteration, id=i),
               weight=weights[i])
        for i in range(n_found_walkers[max_iteration])
    ]
    print('continuing at iteration', max_iteration, 'with',
          n_found_walkers[max_iteration], 'walkers and with discarded weights')
    return walkers, max_iteration
示例#2
0
def task_fail(walker):

    n = walker.state['num']
    if n == 1:
        raise ValueError("No soup for you!!")
    else:
        return Walker(WalkerState(**{'num' : n+1}), walker.weight)
示例#3
0
    def make_initial_walkers(cls, state, n_walkers):

        init_weight = 1.0 / n_walkers
        init_walkers = [
            Walker(deepcopy(state), init_weight) for i in range(n_walkers)
        ]

        return init_walkers
示例#4
0
    def _runtest(self, num_walkers, num_cycles, dimension, debug_prints=False):
        print("Random walk simulation with: ")
        print("Dimension =", dimension)
        print("Probability =", self.probability)
        print("Number of Walkers", num_walkers)
        print("Number of Cycles", num_cycles)

        # set up initial state for walkers
        positions = np.zeros((1, dimension))

        init_state = WalkerState(positions=positions, time=0.0)

        # create list of init_walkers
        initial_weight = 1 / num_walkers
        init_walkers = []

        # init_walkers, n_cycles = get_final_state(path, num_walkers)
        init_walkers = [
            Walker(init_state, initial_weight) for i in range(num_walkers)
        ]

        # set up raunner for system
        runner = RandomWalkRunner(dimension=dimension,
                                  probability=self.probability)

        units = dict(UNIT_NAMES)
        # instantiate a revo unbindingboudaryconditiobs
        segment_length = 10

        # set up the reporter
        randomwalk_system_top_json = self.generate_topology()

        hdf5_reporter = WepyHDF5Reporter(self.hdf5_reporter_path,
                                         mode='w',
                                         save_fields=SAVE_FIELDS,
                                         topology=randomwalk_system_top_json,
                                         resampler=self.resampler,
                                         units=dict(UNITS),
                                         n_dims=dimension)
        # running the simulation
        sim_manager = Manager(init_walkers,
                              runner=runner,
                              resampler=self.resampler,
                              work_mapper=Mapper(),
                              reporters=[hdf5_reporter])

        # run a simulation with the manager for n_steps cycles of length 1000 each
        steps = [segment_length for i in range(num_cycles)]
        print("Start simulation")

        sim_manager.run_simulation(num_cycles,
                                   steps,
                                   debug_prints=debug_prints)

        print("Finished Simulation")
示例#5
0
    def run_segment(self,
                    walker,
                    segment_length,
                    propagation_id,
                    random_seeds,
                    debug_prints=False):
        # segment_length is ignored for now
        parent_id = walker.state.id
        iteration = walker.state[
            'iteration'] + 1  # TODO: increment here or later?
        root = self.west_sim_root

        env = dict(os.environ)
        if parent_id == -1:  # start new trajectory
            assert walker.state.struct_data_ref is not None
            env['WEST_PARENT_DATA_REF'] = walker.state.struct_data_ref
            env['WEST_CURRENT_SEG_INITPOINT_TYPE'] = 'SEG_INITPOINT_NEWTRAJ'
        else:  # continue trajectory
            env['WEST_PARENT_DATA_REF'] = '%s/traj_segs/%06d/%06d' % (
                root, iteration - 1, parent_id)
            env['WEST_CURRENT_SEG_INITPOINT_TYPE'] = 'SEG_INITPOINT_CONTINUES'

        env['WEST_CURRENT_ITER'] = '%d' % iteration
        env['WEST_CURRENT_SEG_ID'] = '%d' % propagation_id
        env['WEST_PARENT_ID'] = '%d' % parent_id
        env['WEST_CURRENT_SEG_DATA_REF'] = '%s/traj_segs/%06d/%06d' % (
            root, iteration, propagation_id)

        env.update(random_seeds)

        pcoor_file = tempfile.NamedTemporaryFile(mode='r')
        env['WEST_PCOORD_RETURN'] = pcoor_file.name
        env['WEST_COORD_RETURN'] = '/dev/null'
        env['SEG_DEBUG'] = ''

        erl = subprocess.call(os.path.expandvars(self.runseg),
                              shell=True,
                              env=env)
        if erl != 0:
            raise RuntimeError('segment propagation failed')

        # creates new_walker from new state and current weight
        pcoor = np.loadtxt(pcoor_file)
        pcoor_file.close()
        new_state = WestpaWalkerState(positions=np.atleast_2d(pcoor)[-1, :],
                                      iteration=iteration,
                                      parent_id=parent_id,
                                      id=propagation_id)
        if debug_prints:
            print('walker #', id, 'with parent', parent_id, 'has weight',
                  walker.weight)
        new_walker = Walker(state=new_state, weight=walker.weight)

        return new_walker
示例#6
0
def main(n_walkers=36,
         n_workers=12,
         n_runs=1,
         n_cycles=20,
         n_steps=100,
         continue_sim=False):
    runner = WestpaRunner()

    init_state = WestpaWalkerState.from_bstate(
        struct_data_ref='$WEST_SIM_ROOT/bstates/0')

    work_mapper = WorkerMapper(worker_type=Worker, num_workers=n_workers)

    if continue_sim:
        # init_walkers = walkers_from_disk(n_expected_walkers=n_walkers)
        init_walkers, start_cycle = WalkersPickleReporter.load_most_recent_cycle(
            debug_prints=True)
    else:
        start_cycle = 0
        init_weight = 1.0 / n_walkers
        init_walkers = [
            Walker(deepcopy(init_state), init_weight) for i in range(n_walkers)
        ]

    unb_distance = PairDistance()

    resampler = REVOResampler(distance=unb_distance, init_state=init_state)

    reporters = [WalkersPickleReporter(freq=10)]

    # Instantiate a simulation manager
    sim_manager = Manager(init_walkers,
                          runner=runner,
                          resampler=resampler,
                          boundary_conditions=NoBC(),
                          work_mapper=work_mapper,
                          reporters=reporters)

    segment_lengths = [n_steps for i in range(start_cycle + n_cycles)]

    ### RUN the simulation
    for run_idx in range(n_runs):
        print("Starting run: {}".format(run_idx))
        sim_manager.continue_run_simulation(
            0,
            n_cycles,
            segment_lengths,
            num_workers=n_workers,
            start_cycle=start_cycle)  #, debug_prints=True)
        print("Finished run: {}".format(run_idx))
示例#7
0
    def run_segment(self, walker, segment_length):
        # documented in superclass

        # Gets the current posiotion of RandomWalk Walker
        positions = walker.state['positions']
        # Make movements for the segment_length steps
        for _ in range(segment_length):
            # calls walk function for one step movement
            new_positions = self._walk(positions)
            positions = new_positions
        # makes new state form new positions
        new_state = WalkerState(positions=new_positions, time=0.0)
        # creates new_walker from new state and current weight
        new_walker = Walker(new_state, walker.weight)
        return new_walker
示例#8
0
    def run_segment(self, walker, segment_length, **kwargs):
        """Runs a random walk simulation for the given number of steps.

        Parameters
        ----------
        walker : object implementing the Walker interface
            The walker for which dynamics will be propagated.


        segment_length : int
            The numerical value that specifies how much dynamical steps
            are to be run.

        Returns
        -------
        new_walker : object implementing the Walker interface
            Walker after dynamics was run, only the state should be modified.

        """

        # Gets the current posiotion of RandomWalk Walker
        positions = walker.state['positions']

        # Make movements for the segment_length steps
        for _ in range(segment_length):
            # calls walk function for one step movement
            new_positions = self._walk(positions)
            positions = new_positions

        # makes new state form new positions
        new_state = WalkerState(positions=new_positions, time=0.0)

        # creates new_walker from new state and current weight
        new_walker = Walker(new_state, walker.weight)

        return new_walker
示例#9
0
mapper = Mapper()

## Run the simulation

if __name__ == "__main__":

    # normalize the output paths
    hdf5_path = osp.join(outputs_dir, hdf5_filename)

    print("Number of steps: {}".format(n_steps))
    print("Number of cycles: {}".format(n_cycles))
    # # create the initial walkers
    init_weight = 1.0 / n_walkers
    init_walkers = [
        Walker(OpenMMState(omm_states[i], activity=np.array([0.])),
               init_weight) for i in range(n_walkers)
    ]

    hdf5_reporter = WepyHDF5Reporter(
        file_path=hdf5_path,
        mode='w',
        # save_fields set to None saves everything
        save_fields=None,
        resampler=resampler,
        boundary_conditions=None,
        topology=json_top,
        units=units)
    reporters = [hdf5_reporter]

    sim_manager = Manager(init_walkers,
                          runner=runner,
示例#10
0
文件: we.py 项目: poharrison/wepy
if __name__ == "__main__":

    if sys.argv[1] == "-h" or sys.argv[1] == "--help":
        print("arguments: n_cycles, n_steps, n_walkers")
    else:
        n_cycles = int(sys.argv[1])
        n_steps = int(sys.argv[2])
        n_walkers = int(sys.argv[3])

        print("Number of steps: {}".format(n_steps))
        print("Number of cycles: {}".format(n_cycles))

        # create the initial walkers
        init_weight = 1.0 / n_walkers
        init_walkers = [Walker(OpenMMState(init_sim_state), init_weight) for i in range(n_walkers)]

        # initialize the simulation manager
        sim_manager = Manager(init_walkers,
                              runner=runner,
                              resampler=resampler,
                              boundary_conditions=ubc,
                              work_mapper=mapper,
                              reporters=reporters)

        # make a number of steps for each cycle. In principle it could be
        # different each cycle
        steps = [n_steps for i in range(n_cycles)]

        # actually run the simulation
        print("Starting run: {}".format(0))
示例#11
0
def task_pass(walker):

    # simulate it actually taking some time
    n = walker.state['num']
    return Walker(WalkerState(**{'num' : n+1}), walker.weight)
示例#12
0
if __name__ == "__main__":

    if sys.argv[1] == "-h" or sys.argv[1] == "--help":
        print("arguments: n_cycles, n_steps, n_walkers")
    else:
        n_cycles = int(sys.argv[1])
        n_steps = int(sys.argv[2])
        n_walkers = int(sys.argv[3])

        print("Number of steps: {}".format(n_steps))
        print("Number of cycles: {}".format(n_cycles))

        # create the initial walkers
        init_weight = 1.0 / n_walkers
        init_walkers = [
            Walker(OpenMMState(init_sim_state), init_weight)
            for i in range(n_walkers)
        ]

        # initialize the simulation manager
        sim_manager = Manager(init_walkers,
                              runner=runner,
                              resampler=resampler,
                              boundary_conditions=ubc,
                              work_mapper=mapper,
                              reporters=reporters)

        # make a number of steps for each cycle. In principle it could be
        # different each cycle
        steps = [n_steps for i in range(n_cycles)]
示例#13
0
def main(n_runs,
         n_cycles,
         steps,
         n_walkers,
         n_workers=1,
         debug_prints=False,
         seed=None):
    ## Load objects needed for various purposes

    # load a json string of the topology
    with open(json_top_path, mode='r') as rf:
        sEH_TPPU_system_top_json = rf.read()

    # an openmm.State object for setting the initial walkers up
    with open(omm_state_path, mode='rb') as rf:
        omm_state = pickle.load(rf)

    ## set up the OpenMM Runner

    # load the psf which is needed for making a system in OpenMM with
    # CHARMM force fields
    psf = omma.CharmmPsfFile(charmm_psf_path)

    # set the box size lengths and angles
    lengths = [CUBE_LENGTH for i in range(3)]
    angles = [CUBE_ANGLE for i in range(3)]
    psf.setBox(*lengths, *angles)

    # charmm forcefields parameters
    params = omma.CharmmParameterSet(*charmm_param_paths)

    # create a system using the topology method giving it a topology and
    # the method for calculation
    system = psf.createSystem(params,
                              nonbondedMethod=omma.CutoffPeriodic,
                              nonbondedCutoff=NONBONDED_CUTOFF,
                              constraints=omma.HBonds)

    # make this a constant temperature and pressure simulation at 1.0
    # atm, 300 K, with volume move attempts every 50 steps
    barostat = omm.MonteCarloBarostat(PRESSURE, TEMPERATURE, VOLUME_MOVE_FREQ)

    # add it as a "Force" to the system
    system.addForce(barostat)

    # make an integrator object that is constant temperature
    integrator = omm.LangevinIntegrator(TEMPERATURE, FRICTION_COEFFICIENT,
                                        STEP_SIZE)

    # set up the OpenMMRunner with the system
    runner = OpenMMRunner(system, psf.topology, integrator, platform=PLATFORM)

    # the initial state, which is used as reference for many things
    init_state = OpenMMState(omm_state)

    ## Make the distance Metric

    # load the crystal structure coordinates
    crystal_traj = mdj.load_pdb(pdb_path)

    # get the atoms in the binding site according to the crystal structure
    bs_idxs = binding_site_atoms(crystal_traj.top, LIG_RESID,
                                 crystal_traj.xyz[0])
    lig_idxs = ligand_idxs(crystal_traj.top, LIG_RESID)
    prot_idxs = protein_idxs(crystal_traj.top)

    # make the distance metric with the ligand and binding site
    # indices for selecting atoms for the image and for doing the
    # alignments to only the binding site. All images will be aligned
    # to the reference initial state
    unb_distance = UnbindingDistance(lig_idxs, bs_idxs, init_state)

    ## Make the resampler

    # make a Wexplore resampler with default parameters and our
    # distance metric
    resampler = WExploreResampler(distance=unb_distance,
                                  init_state=init_state,
                                  max_n_regions=MAX_N_REGIONS,
                                  max_region_sizes=MAX_REGION_SIZES,
                                  pmin=PMIN,
                                  pmax=PMAX)

    ## Make the Boundary Conditions

    # makes ref_traj and selects lingand_atom and protein atom  indices
    # instantiate a revo unbindingboudaryconditiobs
    ubc = UnbindingBC(cutoff_distance=CUTOFF_DISTANCE,
                      initial_state=init_state,
                      topology=crystal_traj.topology,
                      ligand_idxs=lig_idxs,
                      receptor_idxs=prot_idxs)

    ## make the reporters

    # WepyHDF5

    # make a dictionary of units for adding to the HDF5
    # open it in truncate mode first, then switch after first run
    hdf5_reporter = WepyHDF5Reporter(
        hdf5_path,
        mode='w',
        # the fields of the State that will be saved in the HDF5 file
        save_fields=SAVE_FIELDS,
        # the topology in a JSON format
        topology=sEH_TPPU_system_top_json,
        # the resampler and boundary
        # conditions for getting data
        # types and shapes for saving
        resampler=resampler,
        boundary_conditions=ubc,
        # the units to save the fields in
        units=dict(UNITS),
        # sparse (in time) fields
        sparse_fields=dict(SPARSE_FIELDS),
        # sparse atoms fields
        main_rep_idxs=np.concatenate((lig_idxs, prot_idxs)),
        all_atoms_rep_freq=ALL_ATOMS_SAVE_FREQ)

    dashboard_reporter = WExploreDashboardReporter(
        dashboard_path,
        mode='w',
        step_time=STEP_SIZE.value_in_unit(unit.second),
        max_n_regions=resampler.max_n_regions,
        max_region_sizes=resampler.max_region_sizes,
        bc_cutoff_distance=ubc.cutoff_distance)

    setup_reporter = SetupReporter(setup_state_path, mode='w')

    restart_reporter = RestartReporter(restart_state_path, mode='w')

    reporters = [
        hdf5_reporter, dashboard_reporter, setup_reporter, restart_reporter
    ]

    ## The work mapper

    # we use a mapper that uses GPUs
    work_mapper = WorkerMapper(worker_type=OpenMMGPUWorker,
                               num_workers=n_workers)

    ## Combine all these parts and setup the simulation manager

    # set up parameters for running the simulation
    # initial weights
    init_weight = 1.0 / n_walkers

    # a list of the initial walkers
    init_walkers = [
        Walker(OpenMMState(omm_state), init_weight) for i in range(n_walkers)
    ]

    # Instantiate a simulation manager
    sim_manager = Manager(init_walkers,
                          runner=runner,
                          resampler=resampler,
                          boundary_conditions=ubc,
                          work_mapper=work_mapper,
                          reporters=reporters)

    ### RUN the simulation
    for run_idx in range(n_runs):
        print("Starting run: {}".format(run_idx))
        sim_manager.run_simulation(n_cycles, steps, debug_prints=True)
        print("Finished run: {}".format(run_idx))
示例#14
0
def get_char_distance(dimension, num_walkers):
    """Calculate the characteristic value.
    Runs one cycle simulation and calculates the characteristic
    distance value.

    Parameters
    ----------
    dimension: int
        The dimension of the random walk space.


    num_walkers: int
        The number of walkers.

    Returns
    -------
    characteristic distance : float
        The characteristic distance value.

    """
    # set up initial state for walkers
    positions = np.zeros((1, dimension))

    init_state = WalkerState(positions=positions, time=0.0)

    # set up  the distance function
    rw_distance = RandomWalkDistance()

    # set up the  REVO Resampler with the parameters
    resampler = REVOResampler(distance=rw_distance,
                              pmin=PMIN,
                              pmax=PMAX,
                              init_state=init_state,
                              char_dist=1,
                              merge_dist=MERGE_DIST)

    # create list of init_walkers
    initial_weight = 1 / num_walkers

    init_walkers = [
        Walker(init_state, initial_weight) for i in range(num_walkers)
    ]

    # set up raunner for system
    runner = RandomWalkRunner(probability=PROBABILITY)

    n_steps = 10
    mapper = Mapper()
    # running the simulation
    sim_manager = Manager(init_walkers,
                          runner=runner,
                          resampler=resampler,
                          work_mapper=mapper)

    print("Running simulation")
    #runs for one cycle
    sim_manager.init(num_walkers)

    new_walkers = sim_manager.run_segment(init_walkers, n_steps, 0)

    dist_matrix, _ = resampler._all_to_all_distance(new_walkers)

    return np.average(dist_matrix)
示例#15
0
sim_apparatus = WepySimApparatus(runner,
                                 resampler=resampler,
                                 boundary_conditions=ubc)

# we also create a default configuration for the orchestrator that
# will be used unless one is given at runtime for the creation of a
# simulation manager
configuration = Configuration(n_workers=4,
                              reporter_classes=reporter_classes,
                              reporter_partial_kwargs=reporter_kwargs)

# we also want to set up the orchestrator with some default walkers to
# use to get us started. Otherwise these could be provided from a
# snapshot or on their own. Ideally we only want to have a single
# script setting up an orchestrator and then manage everything else on
# the command line intereactively from then on out
init_weight = 1.0 / N_WALKERS
init_walkers = [
    Walker(OpenMMState(init_sim_state), init_weight) for i in range(N_WALKERS)
]

# then create the seed/root/master orchestrator which will be used
# from here on out
orchestrator = Orchestrator(sim_apparatus,
                            default_init_walkers=init_walkers,
                            default_configuration=configuration)

# save it
orchestrator.dump('LJ-pair.orch', mode='wb')
示例#16
0
    def init(self, continue_run=None, init_walkers=None, **kwargs):

        # do the inherited stuff
        super().init(**kwargs)

        # open and initialize the HDF5 file
        logging.info("Initializing HDF5 file at {}".format(self.file_path))

        self.wepy_h5 = WepyHDF5(self.file_path,
                                mode=self.mode,
                                topology=self._tmp_topology,
                                units=self.units,
                                sparse_fields=list(self._sparse_fields.keys()),
                                feature_shapes=self._feature_shapes,
                                feature_dtypes=self._feature_dtypes,
                                n_dims=self._n_dims,
                                main_rep_idxs=self.main_rep_idxs,
                                alt_reps=self.alt_reps_idxs)

        # if we specify save fields only save these for the initial walkers
        if self.save_fields is not None:

            state_fields = list(init_walkers[0].state.dict().keys())

            # make sure all the save_fields are present in the state
            assert all([True if save_field in state_fields else False
                        for save_field in self.save_fields]), \
                            "Not all specified save_fields present in walker states"

            filtered_init_walkers = []
            for walker in init_walkers:
                # make a new state by filtering the attributes of the old ones
                state_d = {
                    k: v
                    for k, v in walker.state.dict().items()
                    if k in self.save_fields
                }

                # and saving alternate representations as we would
                # expect them

                # if there are any alternate representations set them
                for alt_rep_name, alt_rep_idxs in self.alt_reps_idxs.items():

                    alt_rep_path = 'alt_reps/{}'.format(alt_rep_name)

                    # if the idxs are None we want all of the atoms
                    if alt_rep_idxs is None:
                        state_d[alt_rep_path] = state_d['positions'][:]
                    # otherwise get only the atoms we want
                    else:
                        state_d[alt_rep_path] = state_d['positions'][
                            alt_rep_idxs]

                # if the main rep is different then the full state
                # positions set that
                if self.main_rep_idxs is not None:
                    state_d['positions'] = state_d['positions'][
                        self.main_rep_idxs]

                # then making the new state
                new_state = WalkerState(**state_d)

                filtered_init_walkers.append(Walker(new_state, walker.weight))
        # otherwise save the full state
        else:
            filtered_init_walkers = init_walkers

        self.wepy_h5.set_mode(mode='r+')
        with self.wepy_h5:

            # if this is a continuation run of another run we want to
            # initialize it as such

            # initialize a new run
            run_grp = self.wepy_h5.new_run(filtered_init_walkers,
                                           continue_run=continue_run)
            self.wepy_run_idx = run_grp.attrs['run_idx']

            # initialize the run record groups using their fields
            self.wepy_h5.init_run_fields_resampling(self.wepy_run_idx,
                                                    self.resampling_fields)
            # the enumeration for the values of resampling
            self.wepy_h5.init_run_fields_resampling_decision(
                self.wepy_run_idx, self.decision_enum)
            self.wepy_h5.init_run_fields_resampler(self.wepy_run_idx,
                                                   self.resampler_fields)
            # set the fields that are records for tables etc. unless
            # they are already set
            if 'resampling' not in self.wepy_h5.record_fields:
                self.wepy_h5.init_record_fields('resampling',
                                                self.resampling_records)
            if 'resampler' not in self.wepy_h5.record_fields:
                self.wepy_h5.init_record_fields('resampler',
                                                self.resampler_records)

            # if there were no warping fields set there is no boundary
            # conditions and we don't initialize them
            if self.warping_fields is not None:
                self.wepy_h5.init_run_fields_warping(self.wepy_run_idx,
                                                     self.warping_fields)
                self.wepy_h5.init_run_fields_progress(self.wepy_run_idx,
                                                      self.progress_fields)
                self.wepy_h5.init_run_fields_bc(self.wepy_run_idx,
                                                self.bc_fields)
                # table records
                if 'warping' not in self.wepy_h5.record_fields:
                    self.wepy_h5.init_record_fields('warping',
                                                    self.warping_records)
                if 'boundary_conditions' not in self.wepy_h5.record_fields:
                    self.wepy_h5.init_record_fields('boundary_conditions',
                                                    self.bc_records)
                if 'progress' not in self.wepy_h5.record_fields:
                    self.wepy_h5.init_record_fields('progress',
                                                    self.progress_records)

        # if this was opened in a truncation mode, we don't want to
        # overwrite old runs with future calls to init(). so we
        # change the mode to read/write 'r+'
        if self.mode == 'w':
            self.set_mode(0, 'r+')
示例#17
0
    n_cycles = 1

    # the number of MD dynamics steps for each cycle
    n_steps = 1000000
    steps = [n_steps for i in range(n_cycles)]

    # number of parallel simulations
    n_walkers = 10

    # the work mapper
    # work_mapper = ThreadMapper()

    work_mapper = Mapper()

    # create the initial walkers with equal weights
    with start_action(action_type="Init Walkers") as ctx:
         init_weight = 1.0 / n_walkers
         init_walkers = [Walker(copy(init_state), init_weight) for i in range(n_walkers)]

    with start_action(action_type="Init Sim Manager") as ctx:
         sim_manager = Manager(
             init_walkers,
             runner=runner,
             resampler=resampler,
             work_mapper=work_mapper)

# run the simulation and get the results
with start_action(action_type="Simulation") as ctx:
    final_walkers, _ = sim_manager.run_simulation(n_cycles, steps)

示例#18
0
                             'max_n_regions' : RESAMPLER.max_n_regions,
                             'max_region_sizes' : RESAMPLER.max_region_sizes,
                             'bc_cutoff_distance' : BC.cutoff_distance}

REPORTER_KWARGS = [hdf5_reporter_kwargs, dashboard_reporter_kwargs]

N_WORKERS = 8

CONFIGURATION = Configuration(n_workers=N_WORKERS,
                              reporter_classes=REPORTER_CLASSES,
                              reporter_partial_kwargs=REPORTER_KWARGS)

print("created configuration")

### Initial Walkers
N_WALKERS = 48
INIT_WEIGHT = 1.0 / N_WALKERS
INIT_WALKERS = [Walker(deepcopy(INIT_STATE), INIT_WEIGHT) for i in range(N_WALKERS)]

print("created init walkers")

### Orchestrator
ORCHESTRATOR = Orchestrator(APPARATUS,
                            default_init_walkers=INIT_WALKERS,
                            default_configuration=CONFIGURATION)

print("created orchestrator, creating object file now")

ORCH_NAME = "sEH-TPPU"
dump_orchestrator(ORCHESTRATOR, "{}.orch".format(ORCH_NAME), mode='wb')
示例#19
0
def gen_walkers(n_args):

    args = range(n_args)

    return [Walker(WalkerState(**{'num': arg}), 1 / len(args)) for arg in args]
示例#20
0
def run_sim(init_state_path,
            json_top_path,
            forcefield_paths,
            n_cycles,
            n_steps,
            platform,
            n_workers,
            lig_ff=None,
            **kwargs):

    # add in the ligand force fields
    assert lig_ff is not None, "must give ligand forcefield"

    forcefield_paths.append(lig_ff)

    #### Wepy Orchestrator

    # load the wepy.OpenMMState
    with open(init_state_path, 'rb') as rf:
        init_state = pickle.load(rf)

    ### Apparatus

    # Runner components

    # load the JSON for the topology
    with open(json_top_path) as rf:
        json_top_str = rf.read()

    # load it with mdtraj and then convert to openmm
    mdj_top = json_to_mdtraj_topology(json_top_str)
    omm_topology = mdj_top.to_openmm()

    # we need to use the box vectors for setting the simulation up,
    # paying mind to the units
    box_vectors = init_state['box_vectors'] * init_state.box_vectors_unit
    positions = init_state['positions'] * init_state.positions_unit

    # set the box to the last box size from equilibration
    omm_topology.setPeriodicBoxVectors(box_vectors)

    # force field parameters
    force_field = omma.ForceField(*forcefield_paths)

    # create a system using the topology method giving it a topology and
    # the method for calculation
    runner_system = force_field.createSystem(omm_topology,
                                             nonbondedMethod=NONBONDED_METHOD,
                                             nonbondedCutoff=NONBONDED_CUTOFF,
                                             constraints=MD_CONSTRAINTS,
                                             rigidWater=RIGID_WATER,
                                             removeCMMotion=REMOVE_CM_MOTION,
                                             hydrogenMass=HYDROGEN_MASS)

    # barostat to keep pressure constant
    runner_barostat = omm.MonteCarloBarostat(PRESSURE, TEMPERATURE,
                                             VOLUME_MOVE_FREQ)
    # add it to the system
    runner_system.addForce(runner_barostat)

    # set up for a short simulation to runner and prepare
    # instantiate an integrator
    runner_integrator = omm.LangevinIntegrator(TEMPERATURE,
                                               FRICTION_COEFFICIENT, STEP_TIME)

    ## Runner
    runner = OpenMMRunner(runner_system,
                          omm_topology,
                          runner_integrator,
                          platform=platform)

    ## Resampler

    # Distance Metric

    lig_idxs = ligand_idxs(json_top_str)
    prot_idxs = protein_idxs(json_top_str)
    bs_idxs = binding_site_idxs(json_top_str, positions, box_vectors, CUTOFF)

    # set distance metric
    distance_metric = UnbindingDistance(lig_idxs, bs_idxs, init_state)

    # set resampler
    resampler = WExploreResampler(distance=distance_metric,
                                  init_state=init_state,
                                  max_n_regions=MAX_N_REGIONS,
                                  max_region_sizes=MAX_REGION_SIZES,
                                  pmin=PMIN,
                                  pmax=PMAX)

    ## Boundary Conditions

    # optional: set the boundary conditions
    bc = None

    ## CONFIGURATION

    # the idxs of the main representation to save in the output files,
    # it is just the protein and the ligand

    # optional: set the main representation atom indices, set to None
    # to save all the atoms in the 'positions' field
    main_rep_idxs = np.concatenate((lig_idxs, prot_idxs))

    # REPORTERS
    # list of reporter classes and partial kwargs for using in the
    # orchestrator

    hdf5_reporter_kwargs = {
        'main_rep_idxs': main_rep_idxs,
        'topology': json_top_str,
        'resampler': resampler,
        'boundary_conditions': bc,
        # general parameters
        'save_fields': SAVE_FIELDS,
        'units': dict(UNITS),
        'sparse_fields': dict(SPARSE_FIELDS),
        'all_atoms_rep_freq': ALL_ATOMS_SAVE_FREQ
    }

    # get all the reporters together. Order is important since they
    # will get paired with the kwargs
    reporter_classes = [
        WepyHDF5Reporter,
    ]

    # collate the kwargs in the same order
    reporter_kwargs = [
        hdf5_reporter_kwargs,
    ]

    # make the configuration with all these reporters and the default
    # number of workers. Don't be thrown off by this. You don't need
    # this. It is just a convenient way to dynamically name the
    # outputs of the reporters and parametrize the workers and worker
    # mappers. This is mainly for use in the Orchestrator framework
    # but it is useful here just for batch naming everything.
    configuration = Configuration(n_workers=DEFAULT_N_WORKERS,
                                  reporter_classes=reporter_classes,
                                  reporter_partial_kwargs=reporter_kwargs,
                                  config_name="no-orch",
                                  mode='w')

    # then instantiate the reporters from the configuration. THis
    # localizes the file paths to outputs and applies the key-word
    # arguments specified above.
    reporters = configuration._gen_reporters()

    print("created configuration")

    ### Initial Walkers
    init_walkers = [
        Walker(deepcopy(init_state), INIT_WEIGHT) for _ in range(N_WALKERS)
    ]

    print("created init walkers")

    ### Work Mapper
    if platform in ('OpenCL', 'CUDA'):
        # we use a mapper that uses GPUs
        work_mapper = WorkerMapper(worker_type=OpenMMGPUWorker,
                                   num_workers=n_workers)

    elif platform in ('CPU', ):
        # for the CPU we can choose how many threads to use per walker.
        worker_attributes = {'num_threads': N_CPU_THREADS}
        work_mapper = WorkerMapper(worker_type=OpenMMCPUWorker,
                                   worker_attributes=worker_attributes,
                                   num_workers=n_workers)

    elif platform in ('Reference', ):
        # we just use the standard mapper for in serial
        work_mapper = Mapper

    ### Simulation Manager
    sim_manager = Manager(init_walkers,
                          runner=runner,
                          resampler=resampler,
                          boundary_conditions=bc,
                          work_mapper=work_mapper,
                          reporters=reporters)

    ### Run the simulation
    steps = [n_steps for _ in range(n_cycles)]
    sim_manager.run_simulation(n_cycles, steps)
示例#21
0
def gen_walkers():

    return [Walker(WalkerState(**{'num' : arg}), 1/len(ARGS))
            for arg in ARGS]
示例#22
0
def test_apparatus_configuration(datadir_factory, mocker):

    config = Configuration()

    assert config.apparatus_opts == {}

    reparam_config = config.reparametrize(apparatus_opts={
        'runner': {
            'platform': 'CPU',
        },
    })

    assert reparam_config.apparatus_opts == {
        'runner': {
            'platform': 'CPU',
        },
    }

    ## test that we can change the apparatus parameters in the sim_manager

    system_mock = mocker.Mock()
    topology_mock = mocker.Mock()
    integrator_mock = mocker.Mock()

    runner = OpenMMRunner(
        system_mock,
        topology_mock,
        integrator_mock,
    )

    resampler_mock = mocker.MagicMock()  # mocker.patch('WExploreResampler')

    apparatus = WepySimApparatus(
        runner,
        resampler=resampler_mock,
        boundary_conditions=None,
    )
    apparatus._filters = (
        runner,
        None,
        resampler_mock,
    )

    state_mock = mocker.MagicMock(
    )  # mocker.patch('wepy.walker.WalkerState', autospec=True)

    walkers = [Walker(state_mock, 0.1) for i in range(1)]

    snapshot = SimSnapshot(
        walkers,
        apparatus,
    )
    snapshot._walkers = walkers
    snapshot._apparatus = apparatus

    datadir = datadir_factory.mkdatadir()

    orch = Orchestrator(orch_path=str(datadir / "test.orch.sqlite3"))

    sim_manager = orch.gen_sim_manager(
        snapshot,
        reparam_config,
    )

    sim_manager.init()

    # sim_mock = mocker.patch('wepy.runners.openmm.omma.Simulation')
    # platform_mock = mocker.patch('wepy.runners.openmm.omm.Platform')

    # _ = sim_manager.run_cycle(
    #     walkers,
    #     2,
    #     0,
    #     runner_opts={
    #         'platform' : 'CPU',
    #     }
    # )

    # platform_mock.getPlatformByName.assert_called_with('CPU')

    sim_mock = mocker.patch('wepy.runners.openmm.omma.Simulation')
    platform_mock = mocker.patch('wepy.runners.openmm.omm.Platform')
    platform_mock.getPlatformByName.\
        return_value.getPropertyNames.\
        return_value = ('Threads',)

    _ = sim_manager.run_cycle(walkers,
                              2,
                              0,
                              runner_opts={
                                  'platform': 'CPU',
                                  'platform_kwargs': {
                                      'Threads': '3'
                                  },
                              })

    platform_mock.getPlatformByName.assert_called_with('CPU')

    platform_mock.getPlatformByName.\
        return_value.getPropertyNames.\
        assert_called()

    platform_mock.getPlatformByName.\
        return_value.setPropertyDefaultValue.\
        assert_called_with(
        'Threads',
        '3'
    )
def run_sim(init_state_path, json_top_path, forcefield_paths, n_cycles,
            n_steps, n_workers, **kwargs):

    #### Wepy Orchestrator

    # load the wepy.OpenMMState
    with open(init_state_path, 'rb') as rf:
        init_state = pickle.load(rf)

    ### Apparatus

    # Runner components

    # load the JSON for the topology
    with open(json_top_path) as rf:
        json_top_str = rf.read()

    # load it with mdtraj and then convert to openmm
    mdj_top = json_to_mdtraj_topology(json_top_str)
    omm_topology = mdj_top.to_openmm()

    # we need to use the box vectors for setting the simulation up,
    # paying mind to the units
    box_vectors = init_state['box_vectors'] * init_state.box_vectors_unit

    # set the box to the last box size from equilibration
    omm_topology.setPeriodicBoxVectors(box_vectors)

    # force field parameters
    force_field = omma.ForceField(*forcefield_paths)

    # create a system using the topology method giving it a topology and
    # the method for calculation
    runner_system = force_field.createSystem(omm_topology,
                                             nonbondedMethod=NONBONDED_METHOD,
                                             nonbondedCutoff=NONBONDED_CUTOFF,
                                             constraints=MD_CONSTRAINTS,
                                             rigidWater=RIGID_WATER,
                                             removeCMMotion=REMOVE_CM_MOTION,
                                             hydrogenMass=HYDROGEN_MASS)

    # barostat to keep pressure constant
    runner_barostat = omm.MonteCarloBarostat(PRESSURE, TEMPERATURE,
                                             VOLUME_MOVE_FREQ)
    # add it to the system
    runner_system.addForce(runner_barostat)

    # set up for a short simulation to runner and prepare
    # instantiate an integrator
    runner_integrator = omm.LangevinIntegrator(TEMPERATURE,
                                               FRICTION_COEFFICIENT, STEP_TIME)

    ## Runner
    runner = OpenMMRunner(runner_system,
                          omm_topology,
                          runner_integrator,
                          platform=PLATFORM)

    ## Resampler

    # Distance Metric

    # TODO set distance metric
    distance_metric = None

    # TODO set resampler
    resampler = None

    ## Boundary Conditions

    # TODO optional: set the boundary conditions
    bc = None

    # apparatus = WepySimApparatus(runner, resampler=resampler,
    #                              boundary_conditions=bc)

    print("created apparatus")

    ## CONFIGURATION

    # the idxs of the main representation to save in the output files,
    # it is just the protein and the ligand

    # TODO optional: set the main representation atom indices
    main_rep_idxs = None

    # REPORTERS
    # list of reporter classes and partial kwargs for using in the
    # orchestrator

    hdf5_reporter_kwargs = {
        'main_rep_idxs': main_rep_idxs,
        'topology': json_top_str,
        'resampler': resampler,
        'boundary_conditions': bc,
        # general parameters
        'save_fields': SAVE_FIELDS,
        'units': dict(UNITS),
        'sparse_fields': dict(SPARSE_FIELDS),
        'all_atoms_rep_freq': ALL_ATOMS_SAVE_FREQ
    }

    # get all the reporters together. Order is important since they
    # will get paired with the kwargs
    reporter_classes = [
        WepyHDF5Reporter,
    ]

    # collate the kwargs in the same order
    reporter_kwargs = [
        hdf5_reporter_kwargs,
    ]

    # make the configuration with all these reporters and the default number of workers
    configuration = Configuration(n_workers=DEFAULT_N_WORKERS,
                                  reporter_classes=reporter_classes,
                                  reporter_partial_kwargs=reporter_kwargs,
                                  config_name="no-orch")

    # then instantiate them
    reporters = configuration._gen_reporters()

    print("created configuration")

    ### Initial Walkers
    init_walkers = [
        Walker(deepcopy(init_state), INIT_WEIGHT) for _ in range(N_WALKERS)
    ]

    print("created init walkers")

    ### Orchestrator
    # orchestrator = Orchestrator(apparatus,
    #                             default_init_walkers=init_walkers,
    #                             default_configuration=configuration)

    ### Work Mapper
    if PLATFORM in ('OpenCL', 'CUDA'):
        # we use a mapper that uses GPUs
        work_mapper = WorkerMapper(worker_type=OpenMMGPUWorker,
                                   num_workers=n_workers)
    if PLATFORM in ('Reference', 'CPU'):
        # we just use the standard mapper
        work_mapper = Mapper

    ### Simulation Manager
    sim_manager = Manager(init_walkers,
                          runner=runner,
                          resampler=resampler,
                          boundary_conditions=bc,
                          work_mapper=work_mapper,
                          reporters=reporters)

    ### Run the simulation
    steps = [n_steps for _ in range(n_cycles)]
    sim_manager.run_simulation(n_cycles, steps)
示例#24
0
    def _run(self, num_runs, num_cycles, num_walkers):
        """Runs a random walk simulation.

        Parameters
        ----------
        num_runs: int
            The number independet simulations.

        num_cycles: int

            The number of cycles that will be run in the simulation.

        num_walkers: int
            The number of walkers.

        """

        print("Random walk simulation with: ")
        print("Dimension = {}".format(self.dimension))
        print("Probability = {}".format(self.probability))
        print("Number of Walkers = {}".format(num_walkers))
        print("Number of Cycles ={}".format(num_cycles))

        # set up initial state for walkers
        positions = np.zeros((1, self.dimension))

        init_state = WalkerState(positions=positions, time=0.0)

        # create list of init_walkers
        initial_weight = 1 / num_walkers
        init_walkers = []

        init_walkers = [
            Walker(init_state, initial_weight) for i in range(num_walkers)
        ]

        # set up raunner for system
        runner = RandomWalkRunner(probability=self.probability)

        units = dict(UNIT_NAMES)
        # instantiate a revo unbindingboudaryconditiobs
        segment_length = 10

        # set up the reporter
        randomwalk_system_top_json = self.generate_topology()

        hdf5_reporter = WepyHDF5Reporter(file_path=self.hdf5_filename,
                                         mode='w',
                                         save_fields=SAVE_FIELDS,
                                         topology=randomwalk_system_top_json,
                                         resampler=self.resampler,
                                         units=dict(UNITS),
                                         n_dims=self.dimension)
        # running the simulation
        sim_manager = Manager(init_walkers,
                              runner=runner,
                              resampler=self.resampler,
                              work_mapper=Mapper(),
                              reporters=[hdf5_reporter])

        # run a simulation with the manager for n_steps cycles of length 1000 each
        steps = [segment_length for i in range(num_cycles)]
        ### RUN the simulation
        for run_idx in range(num_runs):
            print("Starting run: {}".format(run_idx))
            sim_manager.run_simulation(num_cycles, steps)
            print("Finished run: {}".format(run_idx))

        print("Finished Simulation")