def train(cfg, local_rank, distributed, use_tensorboard=False): model = build_detection_model(cfg) device = torch.device(cfg.MODEL.DEVICE) model.to(device) optimizer = make_optimizer(cfg, model) scheduler = make_lr_scheduler(cfg, optimizer) # Initialize mixed-precision training use_mixed_precision = cfg.DTYPE == "float16" amp_opt_level = 'O1' if use_mixed_precision else 'O0' model, optimizer = amp.initialize(model, optimizer, opt_level=amp_opt_level) if distributed: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[local_rank], output_device=local_rank, # this should be removed if we update BatchNorm stats broadcast_buffers=False, find_unused_parameters=True, ) arguments = {"iteration": 0, "iter_size": cfg.SOLVER.ITER_SIZE} output_dir = cfg.OUTPUT_DIR save_to_disk = get_rank() == 0 checkpoint_period = cfg.SOLVER.CHECKPOINT_PERIOD checkpointer = DetectronCheckpointer( cfg, model, optimizer, scheduler, output_dir, save_to_disk ) extra_checkpoint_data = checkpointer.load(cfg.MODEL.WEIGHT) arguments.update(extra_checkpoint_data) data_loader = make_data_loader( cfg, is_train=True, is_distributed=distributed, start_iter=arguments["iteration"], ) if use_tensorboard: meters = TensorboardLogger( log_dir=os.path.join(cfg['OUTPUT_DIR'], 'log/'), start_iter=arguments['iteration'], delimiter=" ") else: meters = MetricLogger(delimiter=" ") do_train( model, data_loader, optimizer, scheduler, checkpointer, device, checkpoint_period, arguments, meters ) return model
def train_cdb(cfg, local_rank, distributed, use_tensorboard=False): model = build_detection_model(cfg) device = torch.device(cfg.MODEL.DEVICE) model.to(device) model_cdb = ConvConcreteDB(cfg, model.backbone.out_channels) model_cdb.to(device) optimizer = make_optimizer(cfg, model) scheduler = make_lr_scheduler(cfg, optimizer) optimizer_cdb = make_cdb_optimizer(cfg, model_cdb) scheduler_cdb = make_lr_cdb_scheduler(cfg, optimizer_cdb) # Initialize mixed-precision training use_mixed_precision = cfg.DTYPE == "float16" amp_opt_level = 'O1' if use_mixed_precision else 'O0' model, optimizer = amp.initialize(model, optimizer, opt_level=amp_opt_level) model_cdb, optimizer_cdb, = amp.initialize(model_cdb, optimizer_cdb, opt_level=amp_opt_level) if distributed: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[local_rank], output_device=local_rank, # this should be removed if we update BatchNorm stats broadcast_buffers=False, find_unused_parameters=True, ) model_cdb = torch.nn.parallel.DistributedDataParallel( model_cdb, device_ids=[local_rank], output_device=local_rank, # this should be removed if we update BatchNorm stats broadcast_buffers=False, find_unused_parameters=True, ) arguments = {"iteration": 0} output_dir = cfg.OUTPUT_DIR save_to_disk = get_rank() == 0 checkpoint_period = cfg.SOLVER.CHECKPOINT_PERIOD # TODO: check whether the *_cdb is properly loaded for inference when using 1 GPU checkpointer = DetectronCheckpointer(cfg, model, optimizer, scheduler, output_dir, save_to_disk, model_cdb=model_cdb) extra_checkpoint_data = checkpointer.load(cfg.MODEL.WEIGHT) arguments.update(extra_checkpoint_data) print('Do CFG_DIRE', cfg.PATH_DATA_TRAIN) data_loader = make_data_loader( cfg, is_train=True, is_distributed=distributed, start_iter=arguments["iteration"], ) if use_tensorboard: meters = TensorboardLogger(log_dir=os.path.join( cfg['OUTPUT_DIR'], 'log/'), start_iter=arguments['iteration'], delimiter=" ") else: meters = MetricLogger(delimiter=" ") do_train_cdb(model, model_cdb, data_loader, optimizer, optimizer_cdb, scheduler, scheduler_cdb, checkpointer, device, checkpoint_period, arguments, meters, cfg) return model