def testapirunhr(self): startTime = 1 stopTime = 30 currentTime = 1 # set runid, clonemap and casename. Also define the ini file runId = "unittest" configfile = "wflow_hbv_hr.ini" wflow_cloneMap = "wflow_catchment.map" caseName = "wflow_hbv" starttime = starttime = datetime.datetime(1990, 01, 01) myModel = wf.WflowModel(wflow_cloneMap, caseName, runId, configfile) # initialise the framework dynModelFw = wf.wf_DynamicFramework(myModel, stopTime, firstTimestep=startTime, datetimestart=starttime) print dynModelFw.DT # Load model config from files and check directory structure dynModelFw.createRunId(NoOverWrite=False, level=wf.logging.DEBUG) # Run the initial part of the model (reads parameters and sets initial values) dynModelFw._runInitial() # Runs initial part dynModelFw._runResume() # gets the state variables sump = 0.0 for ts in range(startTime, stopTime + 1): if ts < 10: dynModelFw.wf_setValues("P", 0.0) elif ts <= 15: dynModelFw.wf_setValues("P", 10.0) sump = sump + 10.0 else: dynModelFw.wf_setValues("P", 0.0) dynModelFw.wf_setValues("PET", 2.0) dynModelFw.wf_setValues("TEMP", 10.0) dynModelFw._runDynamic(ts, ts) # runs for all timesteps dynModelFw.logger.info("Doing step: " + str(ts)) dynModelFw._runSuspend() # saves the state variables dynModelFw._wf_shutdown() # nore read the csv results acn check of they match the first run # Sum should be approx c 4.569673676 my_data = wf.genfromtxt(os.path.join(caseName, runId, "watbal.csv"), delimiter=",") print("Checking water budget ....") self.assertAlmostEquals(0.0013141632080078125, my_data[:, 2].sum(), places=4) my_data = wf.genfromtxt(os.path.join(caseName, runId, "run.csv"), delimiter=",") print("Checking discharge ....") self.assertAlmostEquals(1811.1795542081197, my_data[:, 2].mean(), places=4)
def testapirun(self): startTime = 1 stopTime = 30 currentTime = 1 # set runid, clonemap and casename. Also define the ini file runId = "unittest" configfile="wflow_hbv.ini" wflow_cloneMap = 'wflow_catchment.map' caseName="wflow_hbv" myModel = wf.WflowModel(wflow_cloneMap, caseName,runId,configfile) # initialise the framework dynModelFw = wf.wf_DynamicFramework(myModel, stopTime,startTime) # Load model config from files and check directory structure dynModelFw.createRunId(NoOverWrite=False,level=wf.logging.ERROR) # Run the initial part of the model (reads parameters and sets initial values) dynModelFw._runInitial() # Runs initial part dynModelFw._runResume() # gets the state variables sump = 0.0 for ts in range(startTime,stopTime): if ts <10: dynModelFw.wf_setValues('P', 0.0) elif ts <= 15: dynModelFw.wf_setValues('P', 10.0) sump = sump + 10.0 else: dynModelFw.wf_setValues('P', 0.0) dynModelFw.wf_setValues('PET', 2.0) dynModelFw.wf_setValues('TEMP', 10.0) dynModelFw._runDynamic(ts,ts) # runs for all timesteps dynModelFw.logger.info("Doing step: " + str(ts)) dynModelFw._runSuspend() # saves the state variables dynModelFw._wf_shutdown() # nore read the csv results acn check of they match the first run # Sum should be approx c 4.569673676 my_data = wf.genfromtxt(os.path.join(caseName,runId,"watbal.csv"), delimiter=',') print("Checking water budget ....") self.assertAlmostEquals( 0.00018204912482389091,my_data[:,2].sum()) print("Checking precip sum ....") my_data = wf.genfromtxt(os.path.join(caseName,runId,"P.csv"), delimiter=',') self.assertAlmostEquals(sump,my_data[:,2].sum())