def main(): try: parser = get_args_parser() args = parser.parse_args() if args.command == "predict_proba": predict_proba(args.input_path, args.model_path, args.device) elif args.command == "predict": print(predict(args.input_path, args.model_path, args.device)) elif args.command == "learn": learn(args.location, args.num_samples, args.device) elif args.command == "crossval": crossval(path=args.model_path) elif args.command in ["locations", "ls"]: locations(args.model_path) elif args.command == "rename": rename_label(args.label, args.new_label) print("Retraining model...") train_model() elif args.command == "train": train_model(args.model_path) else: parser.print_help() parser.exit(1) except (KeyboardInterrupt, SystemExit): exit()
def main(): if "predict_proba" == sys.argv[1]: predict_proba() elif "predict" == sys.argv[1]: predict() elif "learn" in sys.argv[1] and len(sys.argv) == 4: category = sys.argv[2] n = int(sys.argv[3]) learn(category, n) elif "crossval" in sys.argv[1]: crossval()
def main(): parser = get_args_parser() args = parser.parse_args() if args.command == "predict_proba": predict_proba() elif args.command == "predict": predict() elif args.command == "learn": learn(args.location, args.num_samples) elif args.command == "crossval": crossval() else: parser.print_help() parser.exit(1)
def main(): parser = get_args_parser() args = parser.parse_args() if args.command == "predict_proba": predict_proba() elif args.command == "predict": predict() elif args.command == "learn": learn(args.location, args.num_samples) elif args.command == "crossval": crossval() elif args.command == "locations": locations() else: parser.print_help() parser.exit(1)
def main(): parser = get_args_parser() args = parser.parse_args() if args.command == "predict_proba": predict_proba() elif args.command == "predict": print(predict()) elif args.command == "learn": learn(args.location, args.num_samples) elif args.command == "crossval": crossval() elif args.command in ["locations", "ls"]: locations() elif args.command == "rename": rename_label(args.label, args.new_label) print("Retraining model...") train_model() else: parser.print_help() parser.exit(1)
def test_crossval(): X, y = mock_get_train_data() pipeline = mock_get_model() return crossval(pipeline, X, y, folds=2, n=1)
def test_crossval(): X, y = mock_get_train_data() pipeline = mock_get_model() assert crossval(pipeline, X, y, folds=2, n=1)