示例#1
0
 def from_protobuf(
     cls,
     message,
 ):
     return ModelMetrics(
         confusion_matrix=ConfusionMatrix.from_protobuf(
             message.scoreMatrix),
         regression_metrics=RegressionMetrics.from_protobuf(
             message.regressionMetrics),
         model_type=message.modelType,
     )
示例#2
0
def test_confusion_matrix_to_protobuf():
    targets_1 = ["cat", "dog", "pig"]
    predictions_1 = ["cat", "dog", "dog"]
    scores_1 = [0.1, 0.2, 0.4]

    labels_1 = ["cat", "dog", "pig"]
    conf_M_1 = ConfusionMatrix(labels_1)
    conf_M_1.add(predictions_1, targets_1, scores_1)
    message = conf_M_1.to_protobuf()

    expected_1 = [[1, 0, 0], [0, 1, 1], [0, 0, 0]]

    new_conf = ConfusionMatrix.from_protobuf(message)
    for idx, value in enumerate(new_conf.labels):
        assert value == conf_M_1.labels[idx]

    for idx, value in enumerate(new_conf.labels):
        for jdx, value_2 in enumerate(new_conf.labels):
            assert new_conf.confusion_matrix[
                idx, jdx].floats.count == expected_1[idx][jdx]
示例#3
0
def test_parse_empty_protobuf_should_return_none():
    empty_message = ScoreMatrixMessage()
    assert ConfusionMatrix.from_protobuf(empty_message) is None
示例#4
0
 def from_protobuf(
     cls,
     message,
 ):
     return ModelMetrics(confusion_matrix=ConfusionMatrix.from_protobuf(
         message.scoreMatrix))