def main(): loc = 'fl0' weatherDir = '/data1/ancillary_data/fl0/eol/' weatherFileTag = 'v2' iyear = 2010 fyear = 2010 wdir, wspeed, temp, rh, dtw = weatherout(loc, weatherDir, weatherFileTag, iyear, fyear) hours = [] for k in dtw: hours.append(k.hour) hours = np.asarray(hours) inds = np.where((wspeed <= 10.0) & (hours > 8) & (hours < 18))[0] fig = plt.figure(figsize=(8, 8), dpi=80, facecolor='w', edgecolor='w') rect = [0.1, 0.1, 0.8, 0.8] ax = WindroseAxes(fig, rect, axisbg='w') fig.add_axes(ax) ax.bar(wdir[inds], wspeed[inds], normed=True, opening=0.9, edgecolor='white') ax.set_legend() #fig2 = plt.figure(figsize=(8, 8), dpi=80, facecolor='w', edgecolor='w') ax2 = WindAxes.from_ax() bins = np.arange(0, 10, 0.5) bins = bins[1:] ax2, params = ax2.pdf(wspeed[inds], bins=bins) ax3 = WindAxes.from_ax() bins = np.arange(0, 360, 15) bins = bins[1:] ax3, params = ax3.pdf(wdir[inds], bins=bins) # fig2, ax2 = plt.subplots(figsize=(8,6)) # ax2.scatter(wdir, wspeed, facecolors='red', edgecolors='black', s=35) # ax2.grid(True) plt.show(block=False) pdfsav = PdfPages('/data/iortega/results/fl0/windrose.pdf') pdfsav.savefig(fig, dpi=200) pdfsav.close() user_input = raw_input('Press any key to exit >>> ') sys.exit()
def main(): loc = 'fl0' weatherDir = '/data1/ancillary_data/fl0/eol/' weatherFileTag = 'v2' iyear = 2010 fyear = 2016 wdir, wspeed, temp, rh, dtw = weatherout(loc, weatherDir, weatherFileTag, iyear, fyear ) hours = [] for k in dtw: hours.append(k.hour) hours = np.asarray(hours) inds = np.where( (wspeed <= 10.0) & (hours > 8) & (hours < 18) )[0] fig = plt.figure(figsize=(8, 8), dpi=80, facecolor='w', edgecolor='w') rect = [0.1, 0.1, 0.8, 0.8] ax = WindroseAxes(fig, rect, axisbg='w') fig.add_axes(ax) ax.bar(wdir[inds], wspeed[inds], normed=True, opening=0.9, edgecolor='white') ax.set_legend() #fig2 = plt.figure(figsize=(8, 8), dpi=80, facecolor='w', edgecolor='w') ax2 = WindAxes.from_ax() bins = np.arange(0, 10 , 0.5) bins = bins[1:] ax2, params = ax2.pdf(wspeed[inds], bins=bins) ax3 = WindAxes.from_ax() bins = np.arange(0, 360, 15) bins = bins[1:] ax3, params = ax3.pdf(wdir[inds], bins=bins) # fig2, ax2 = plt.subplots(figsize=(8,6)) # ax2.scatter(wdir, wspeed, facecolors='red', edgecolors='black', s=35) # ax2.grid(True) plt.show(block=False) pdfsav = PdfPages('/data/iortega/results/fl0/windrose.pdf') pdfsav.savefig(fig,dpi=200) pdfsav.close() user_input = raw_input('Press any key to exit >>> ') sys.exit()
def test_windrose_np_mpl_oo(): bins = np.arange(0, 8, 1) # windrose with scatter plot ax = WindroseAxes.from_ax() ax.scatter(wd, ws, alpha=0.2) ax.set_legend() plt.savefig("tests/output/oo/scatter.png") plt.close() # windrose like a stacked histogram with normed (displayed in percent) results ax = WindroseAxes.from_ax() ax.bar(wd, ws, normed=True, opening=0.8, edgecolor="white") ax.set_legend() plt.savefig("tests/output/oo/bar.png") plt.close() # Another stacked histogram representation, not normed, with bins limits ax = WindroseAxes.from_ax() ax.box(wd, ws, bins=bins) ax.set_legend() plt.savefig("tests/output/oo/box.png") plt.close() # A windrose in filled representation, with a controled colormap ax = WindroseAxes.from_ax() ax.contourf(wd, ws, bins=bins, cmap=cm.hot) ax.set_legend() plt.savefig("tests/output/oo/contourf.png") plt.close() # Same as above, but with contours over each filled region... ax = WindroseAxes.from_ax() ax.contourf(wd, ws, bins=bins, cmap=cm.hot) ax.contour(wd, ws, bins=bins, colors="black") ax.set_legend() plt.savefig("tests/output/oo/contourf-contour.png") plt.close() # ...or without filled regions ax = WindroseAxes.from_ax() ax.contour(wd, ws, bins=bins, cmap=cm.hot, lw=3) ax.set_legend() plt.savefig("tests/output/oo/contour.png") plt.close() # print ax._info # plt.show() ax = WindAxes.from_ax() bins = bins[1:] ax.pdf(ws, bins=bins) plt.savefig("tests/output/oo/pdf.png") plt.close()
def plot_weibull(ws,diro,file_Merge): '''画weibull分布图''' ws.values[ws.values==0]=np.nan ws=ws.dropna() binn = np.arange(0.0, 30.0, 1) ax2, params = wrpdf(ws, bins=binn, Nx=100, bar_color='darkgreen', \ plot_color='royalblue', Nbins=26, \ ax = WindAxes.from_ax(fig = plt.figure(figsize=(6,4)))) ax2.text(15, 0.1,"A = %.2f, K = %.2f" % (params[3],params[1]),fontsize=12) ax2.set_title(file_Merge[6:10]+'_'+ws.name[3:]) plt.savefig(diro+'\\'+file_Merge[6:10]+'_'+ws.name[3:]+'Weibull.png',bbox_inches='tight',dpi=96) plt.show()
def test_windrose_np_mpl_oo(): bins = np.arange(0, 8, 1) #windrose with scatter plot ax = WindroseAxes.from_ax() ax.scatter(wd, ws, alpha=0.2) ax.set_legend() plt.savefig('tests/output/oo/scatter.png') #windrose like a stacked histogram with normed (displayed in percent) results ax = WindroseAxes.from_ax() ax.bar(wd, ws, normed=True, opening=0.8, edgecolor='white') ax.set_legend() plt.savefig('tests/output/oo/bar.png') #Another stacked histogram representation, not normed, with bins limits ax = WindroseAxes.from_ax() ax.box(wd, ws, bins=bins) ax.set_legend() plt.savefig('tests/output/oo/box.png') #A windrose in filled representation, with a controled colormap ax = WindroseAxes.from_ax() ax.contourf(wd, ws, bins=bins, cmap=cm.hot) ax.set_legend() plt.savefig('tests/output/oo/contourf.png') #Same as above, but with contours over each filled region... ax = WindroseAxes.from_ax() ax.contourf(wd, ws, bins=bins, cmap=cm.hot) ax.contour(wd, ws, bins=bins, colors='black') ax.set_legend() plt.savefig('tests/output/oo/contourf-contour.png') #...or without filled regions ax = WindroseAxes.from_ax() ax.contour(wd, ws, bins=bins, cmap=cm.hot, lw=3) ax.set_legend() plt.savefig('tests/output/oo/contour.png') #print ax._info #plt.show() ax = WindAxes.from_ax() bins = bins[1:] ax.pdf(ws, bins=bins) plt.savefig('tests/output/oo/pdf.png')
def main(): # Create wind speed and direction variables N = 500 ws = np.random.random(N) * 6 wd = np.random.random(N) * 360 ax = WindroseAxes.from_ax() ax.scatter(wd, ws, alpha=0.2) ax.set_legend() # windrose like a stacked histogram with normed (displayed in percent) results ax = WindroseAxes.from_ax() ax.bar(wd, ws, normed=True, opening=0.8, edgecolor="white") ax.set_legend() # Another stacked histogram representation, not normed, with bins limits ax = WindroseAxes.from_ax() bins = np.arange(0, 8, 1) ax.box(wd, ws, bins=bins) ax.set_legend() # A windrose in filled representation, with a controled colormap ax = WindroseAxes.from_ax() ax.contourf(wd, ws, bins=bins, cmap=cm.hot) ax.set_legend() # Same as above, but with contours over each filled region... ax = WindroseAxes.from_ax() ax.contourf(wd, ws, bins=bins, cmap=cm.hot) ax.contour(wd, ws, bins=bins, colors="black") ax.set_legend() # ...or without filled regions ax = WindroseAxes.from_ax() ax.contour(wd, ws, bins=bins, cmap=cm.hot, lw=3) ax.set_legend() # print ax._info # plt.show() ax = WindAxes.from_ax() bins = np.arange(0, 6 + 1, 0.5) bins = bins[1:] ax.pdf(ws, bins=bins) plt.show()
def main(): # Create wind speed and direction variables N = 500 ws = np.random.random(N) * 6 wd = np.random.random(N) * 360 ax = WindroseAxes.from_ax() ax.scatter(wd, ws, alpha=0.2) ax.set_legend() # windrose like a stacked histogram with normed (displayed in percent) results ax = WindroseAxes.from_ax() ax.bar(wd, ws, normed=True, opening=0.8, edgecolor='white') ax.set_legend() # Another stacked histogram representation, not normed, with bins limits ax = WindroseAxes.from_ax() bins = np.arange(0, 8, 1) ax.box(wd, ws, bins=bins) ax.set_legend() # A windrose in filled representation, with a controled colormap ax = WindroseAxes.from_ax() ax.contourf(wd, ws, bins=bins, cmap=cm.hot) ax.set_legend() # Same as above, but with contours over each filled region... ax = WindroseAxes.from_ax() ax.contourf(wd, ws, bins=bins, cmap=cm.hot) ax.contour(wd, ws, bins=bins, colors='black') ax.set_legend() # ...or without filled regions ax = WindroseAxes.from_ax() ax.contour(wd, ws, bins=bins, cmap=cm.hot, lw=3) ax.set_legend() # print ax._info # plt.show() ax = WindAxes.from_ax() bins = np.arange(0, 6 + 1, 0.5) bins = bins[1:] ax.pdf(ws, bins=bins) plt.show()
#Another stacked histogram representation, not normed, with bins limits ax = WindroseAxes.from_ax() bins = np.arange(0, 8, 1) ax.box(wd, ws, bins=bins) ax.set_legend() #A windrose in filled representation, with a controled colormap ax = WindroseAxes.from_ax() ax.contourf(wd, ws, bins=bins, cmap=cm.hot) ax.set_legend() #Same as above, but with contours over each filled region... ax = WindroseAxes.from_ax() ax.contourf(wd, ws, bins=bins, cmap=cm.hot) ax.contour(wd, ws, bins=bins, colors='black') ax.set_legend() #...or without filled regions ax = WindroseAxes.from_ax() ax.contour(wd, ws, bins=bins, cmap=cm.hot, lw=3) ax.set_legend() ##print ax._info #plt.show() ax = WindAxes.from_ax() bins = np.arange(0, 6 + 1, 0.5) bins = bins[1:] ax.pdf(ws, bins=bins) plt.show()