def loc(self): """ Access a group of rows by label(s) or a boolean array. ``.loc[]`` is primarily label based, but may also be used with a boolean array. If the selection result is a DataFrame or Series, Woodwork typing information will be initialized for the returned object when possible. Allowed inputs are: A single label, e.g. ``5`` or ``'a'``, (note that ``5`` is interpreted as a *label* of the index, and **never** as an integer position along the index). A list or array of labels, e.g. ``['a', 'b', 'c']``. A slice object with labels, e.g. ``'a':'f'``. A boolean array of the same length as the axis being sliced, e.g. ``[True, False, True]``. An alignable boolean Series. The index of the key will be aligned before masking. An alignable Index. The Index of the returned selection will be the input. A ``callable`` function with one argument (the calling Series or DataFrame) and that returns valid output for indexing (one of the above) """ if self._schema is None: _raise_init_error() return _locIndexer(self._dataframe)
def test_locIndexer_class(sample_df): sample_df.ww.init() ind = _locIndexer(sample_df) pd.testing.assert_frame_equal(to_pandas(ind.data), to_pandas(sample_df)) pd.testing.assert_frame_equal(to_pandas(ind[1:2]), to_pandas(sample_df.loc[1:2])) single_val = ind[0, 'id'] if dd and isinstance(single_val, dd.Series): # Dask returns a series - convert to pandas to check the value single_val = single_val.compute() assert len(single_val) == 1 single_val = single_val.loc[0] assert single_val == 0