def actualSetUp(self, nfreqwin=3, dospectral=True, dopol=False, amp_errors=None, phase_errors=None, zerow=True): if amp_errors is None: amp_errors = {'T': 0.0, 'G': 0.1} if phase_errors is None: phase_errors = {'T': 1.0, 'G': 0.0} self.npixel = 512 self.low = create_named_configuration('LOWBD2', rmax=750.0) self.freqwin = nfreqwin self.vis_list = list() self.ntimes = 1 self.times = numpy.linspace(-3.0, +3.0, self.ntimes) * numpy.pi / 12.0 self.frequency = numpy.linspace(0.8e8, 1.2e8, self.freqwin) if self.freqwin > 1: self.channelwidth = numpy.array(self.freqwin * [self.frequency[1] - self.frequency[0]]) else: self.channelwidth = numpy.array([1e6]) if dopol: self.vis_pol = PolarisationFrame('linear') self.image_pol = PolarisationFrame('stokesIQUV') f = numpy.array([100.0, 20.0, -10.0, 1.0]) else: self.vis_pol = PolarisationFrame('stokesI') self.image_pol = PolarisationFrame('stokesI') f = numpy.array([100.0]) if dospectral: flux = numpy.array([f * numpy.power(freq / 1e8, -0.7) for freq in self.frequency]) else: flux = numpy.array([f]) self.phasecentre = SkyCoord(ra=+180.0 * u.deg, dec=-60.0 * u.deg, frame='icrs', equinox='J2000') self.blockvis_list = [ingest_unittest_visibility(self.low, [self.frequency[i]], [self.channelwidth[i]], self.times, self.vis_pol, self.phasecentre, block=True, zerow=zerow) for i in range(nfreqwin)] for v in self.blockvis_list: v.data['vis'][...] = 1.0 + 0.0j self.error_blockvis_list = [copy_visibility(v) for v in self.blockvis_list] gt = create_gaintable_from_blockvisibility(self.blockvis_list[0]) gt = simulate_gaintable(gt, phase_error=0.1, amplitude_error=0.0, smooth_channels=1, leakage=0.0) self.error_blockvis_list = [apply_gaintable(self.error_blockvis_list[i], gt) for i in range(self.freqwin)] assert numpy.max(numpy.abs(self.error_blockvis_list[0].vis - self.blockvis_list[0].vis)) > 0.0
def corrupt_vis(vis, gt, **kwargs): if isinstance(vis, Visibility): bv = convert_visibility_to_blockvisibility(vis) else: bv = vis if gt is None: gt = create_gaintable_from_blockvisibility(bv, **kwargs) gt = simulate_gaintable(gt, **kwargs) bv = apply_gaintable(bv, gt) if isinstance(vis, Visibility): return convert_blockvisibility_to_visibility(bv) else: return bv
def ift_ical_sm(v, sm): assert isinstance(v, Visibility), v assert isinstance(sm.image, Image), sm.image if docal and isinstance(sm.gaintable, GainTable): bv = convert_visibility_to_blockvisibility(v) bv = apply_gaintable(bv, sm.gaintable) v = convert_blockvisibility_to_visibility(bv) result = invert_list_serial_workflow([v], [sm.image], context=context, vis_slices=vis_slices, facets=facets, gcfcf=gcfcf, **kwargs)[0] if isinstance(sm.mask, Image): result[0].data *= sm.mask.data return result
def ft_cal_sm(ov, sm, g): assert isinstance(ov, Visibility), ov assert isinstance(sm, SkyModel), sm if g is not None: assert len(g) == 2, g assert isinstance(g[0], Image), g[0] assert isinstance(g[1], ConvolutionFunction), g[1] v = copy_visibility(ov) v.data['vis'][...] = 0.0 + 0.0j if len(sm.components) > 0: if isinstance(sm.mask, Image): comps = copy_skycomponent(sm.components) comps = apply_beam_to_skycomponent(comps, sm.mask) v = predict_skycomponent_visibility(v, comps) else: v = predict_skycomponent_visibility(v, sm.components) if isinstance(sm.image, Image): if numpy.max(numpy.abs(sm.image.data)) > 0.0: if isinstance(sm.mask, Image): model = copy_image(sm.image) model.data *= sm.mask.data else: model = sm.image v = predict_list_serial_workflow([v], [model], context=context, vis_slices=vis_slices, facets=facets, gcfcf=[g], **kwargs)[0] if docal and isinstance(sm.gaintable, GainTable): bv = convert_visibility_to_blockvisibility(v) bv = apply_gaintable(bv, sm.gaintable, inverse=True) v = convert_blockvisibility_to_visibility(bv) return v
def ift_ical_sm(v, sm, g): assert isinstance(v, Visibility), v assert isinstance(sm, SkyModel), sm if g is not None: assert len(g) == 2, g assert isinstance(g[0], Image), g[0] assert isinstance(g[1], ConvolutionFunction), g[1] if docal and isinstance(sm.gaintable, GainTable): bv = convert_visibility_to_blockvisibility(v) bv = apply_gaintable(bv, sm.gaintable) v = convert_blockvisibility_to_visibility(bv) result = invert_list_serial_workflow([v], [sm.image], context=context, vis_slices=vis_slices, facets=facets, gcfcf=[g], **kwargs)[0] if isinstance(sm.mask, Image): result[0].data *= sm.mask.data return result
def actualSetUp(self, add_errors=False, nfreqwin=7, dospectral=True, dopol=False, zerow=True): self.npixel = 512 self.low = create_named_configuration('LOWBD2', rmax=750.0) self.freqwin = nfreqwin self.vis_list = list() self.ntimes = 5 self.times = numpy.linspace(-3.0, +3.0, self.ntimes) * numpy.pi / 12.0 self.frequency = numpy.linspace(0.8e8, 1.2e8, self.freqwin) if self.freqwin > 1: self.channelwidth = numpy.array(self.freqwin * [self.frequency[1] - self.frequency[0]]) else: self.channelwidth = numpy.array([1e6]) if dopol: self.vis_pol = PolarisationFrame('linear') self.image_pol = PolarisationFrame('stokesIQUV') f = numpy.array([100.0, 20.0, -10.0, 1.0]) else: self.vis_pol = PolarisationFrame('stokesI') self.image_pol = PolarisationFrame('stokesI') f = numpy.array([100.0]) if dospectral: flux = numpy.array([f * numpy.power(freq / 1e8, -0.7) for freq in self.frequency]) else: flux = numpy.array([f]) self.phasecentre = SkyCoord(ra=+180.0 * u.deg, dec=-60.0 * u.deg, frame='icrs', equinox='J2000') self.blockvis_list = [ingest_unittest_visibility(self.low, [self.frequency[i]], [self.channelwidth[i]], self.times, self.vis_pol, self.phasecentre, block=True, zerow=zerow) for i in range(nfreqwin)] self.vis_list = [convert_blockvisibility_to_visibility(bv) for bv in self.blockvis_list] self.model_imagelist = [ create_unittest_model(self.vis_list[i], self.image_pol, npixel=self.npixel, cellsize=0.0005) for i in range(nfreqwin)] self.components_list = [create_unittest_components(self.model_imagelist[freqwin], flux[freqwin, :][numpy.newaxis, :]) for freqwin, m in enumerate(self.model_imagelist)] self.blockvis_list = [ predict_skycomponent_visibility(self.blockvis_list[freqwin], self.components_list[freqwin]) for freqwin, _ in enumerate(self.blockvis_list)] self.model_imagelist = [insert_skycomponent(self.model_imagelist[freqwin], self.components_list[freqwin]) for freqwin in range(nfreqwin)] model = self.model_imagelist[0] self.cmodel = smooth_image(model) if self.persist: export_image_to_fits(model, '%s/test_imaging_serial_model.fits' % self.dir) export_image_to_fits(self.cmodel, '%s/test_imaging_serial_cmodel.fits' % self.dir) if add_errors: gt = create_gaintable_from_blockvisibility(self.blockvis_list[0]) gt = simulate_gaintable(gt, phase_error=0.1, amplitude_error=0.0, smooth_channels=1, leakage=0.0, seed=180555) self.blockvis_list = [apply_gaintable(self.blockvis_list[i], gt) for i in range(self.freqwin)] self.vis_list = [convert_blockvisibility_to_visibility(bv) for bv in self.blockvis_list] self.model_imagelist = [ create_unittest_model(self.vis_list[i], self.image_pol, npixel=self.npixel, cellsize=0.0005) for i in range(nfreqwin)]
def corrupt_vis(vis, gt, **kwargs): if gt is None: gt = create_gaintable_from_blockvisibility(vis, **kwargs) gt = simulate_gaintable(gt, **kwargs) return apply_gaintable(vis, gt)
def ingest_visibility(self, freq=None, chan_width=None, times=None, add_errors=False, block=True, bandpass=False): if freq is None: freq = [1e8] if chan_width is None: chan_width = [1e6] if times is None: times = (numpy.pi / 12.0) * numpy.linspace(-3.0, 3.0, 5) lowcore = create_named_configuration('LOWBD2', rmax=750.0) frequency = numpy.array(freq) channel_bandwidth = numpy.array(chan_width) phasecentre = SkyCoord(ra=+180.0 * u.deg, dec=-60.0 * u.deg, frame='icrs', equinox='J2000') if block: vt = create_blockvisibility( lowcore, times, frequency, channel_bandwidth=channel_bandwidth, weight=1.0, phasecentre=phasecentre, polarisation_frame=PolarisationFrame("stokesI")) else: vt = create_visibility( lowcore, times, frequency, channel_bandwidth=channel_bandwidth, weight=1.0, phasecentre=phasecentre, polarisation_frame=PolarisationFrame("stokesI")) cellsize = 0.001 model = create_image_from_visibility( vt, npixel=self.npixel, cellsize=cellsize, npol=1, frequency=frequency, phasecentre=phasecentre, polarisation_frame=PolarisationFrame("stokesI")) nchan = len(self.frequency) flux = numpy.array(nchan * [[100.0]]) facets = 4 rpix = model.wcs.wcs.crpix - 1.0 spacing_pixels = self.npixel // facets centers = [-1.5, -0.5, 0.5, 1.5] comps = list() for iy in centers: for ix in centers: p = int(round(rpix[0] + ix * spacing_pixels * numpy.sign(model.wcs.wcs.cdelt[0]))), \ int(round(rpix[1] + iy * spacing_pixels * numpy.sign(model.wcs.wcs.cdelt[1]))) sc = pixel_to_skycoord(p[0], p[1], model.wcs, origin=1) comp = create_skycomponent( direction=sc, flux=flux, frequency=frequency, polarisation_frame=PolarisationFrame("stokesI")) comps.append(comp) if block: predict_skycomponent_visibility(vt, comps) else: predict_skycomponent_visibility(vt, comps) insert_skycomponent(model, comps) self.comps = comps self.model = copy_image(model) self.empty_model = create_empty_image_like(model) export_image_to_fits( model, '%s/test_pipeline_functions_model.fits' % (self.dir)) if add_errors: # These will be the same for all calls numpy.random.seed(180555) gt = create_gaintable_from_blockvisibility(vt) gt = simulate_gaintable(gt, phase_error=1.0, amplitude_error=0.0) vt = apply_gaintable(vt, gt) if bandpass: bgt = create_gaintable_from_blockvisibility(vt, timeslice=1e5) bgt = simulate_gaintable(bgt, phase_error=0.01, amplitude_error=0.01, smooth_channels=4) vt = apply_gaintable(vt, bgt) return vt