示例#1
0
    def test_crosssubtract_datamodel(self):
        self.actualSetUp(zerow=True)

        skymodel_vislist = predict_skymodel_list_serial_workflow(
            self.vis_list[0], self.skymodel_list, context='2d', docal=True)
        vobs = sum_predict_results(skymodel_vislist)

        skymodel_vislist = crosssubtract_datamodels_skymodel_list_serial_workflow(
            vobs, skymodel_vislist)

        result_skymodel = [
            SkyModel(components=None, image=self.skymodel_list[-1].image)
            for v in skymodel_vislist
        ]

        results = invert_skymodel_list_serial_workflow(skymodel_vislist,
                                                       result_skymodel,
                                                       context='2d',
                                                       docal=True)
        assert numpy.max(numpy.abs(results[0][0].data)) > 0.0
        assert numpy.max(numpy.abs(results[0][1])) > 0.0
        if self.plot:
            import matplotlib.pyplot as plt
            from wrappers.serial.image.operations import show_image
            show_image(results[0][0],
                       title='Dirty image after cross-subtraction',
                       vmax=0.1,
                       vmin=-0.01)
            plt.show()
示例#2
0
    def progress(res, tl_list, gt_list, it, context='MPCCAL'):
        print('Iteration %d' % it)

        print(
            qa_image(res,
                     context='%s residual image: iteration %d' %
                     (context, it)))
        export_image_to_fits(
            res,
            arl_path(
                "test_results/low-sims-mpc-%s-residual_iteration%d_rmax%.1f.fits"
                % (context, it, rmax)))
        show_image(res,
                   title='%s residual image: iteration %d' % (context, it))
        plt.show(block=block_plots)

        combined_model = calculate_skymodel_equivalent_image(tl_list)
        print(
            qa_image(combined_model,
                     context='Combined model: iteration %d' % it))
        export_image_to_fits(
            combined_model,
            arl_path(
                "test_results/low-sims-mpc-%s-model_iteration%d_rmax%.1f.fits"
                % (context, it, rmax)))

        plt.clf()
        for i in range(len(tl_list)):
            plt.plot(
                numpy.angle(tl_list[i].gaintable.gain[:, :, 0, 0,
                                                      0]).flatten(),
                numpy.angle(gt_list[i]['T'].gain[:, :, 0, 0, 0]).flatten(),
                '.')
        plt.xlabel('Current phase')
        plt.ylabel('Update to phase')
        plt.title("%s iteration%d: Change in phase" % (context, it))
        plt.savefig(
            arl_path(
                "test_results/low-sims-mpc-%s-skymodel-phase-change_iteration%d.jpg"
                % (context, it)))
        plt.show(block=block_plots)
        return tl_list
示例#3
0
            if ix >= iy:
                p = int(round(centre[0] + ix * spacing_pixels * numpy.sign(model.wcs.wcs.cdelt[0]))), \
                    int(round(centre[1] + iy * spacing_pixels * numpy.sign(model.wcs.wcs.cdelt[1])))
                sc = pixel_to_skycoord(p[0], p[1], model.wcs)
                log.info("Component at (%f, %f) [0-rel] %s" % (p[0], p[1], str(sc)))
                flux = numpy.array([[100.0 + 2.0 * ix + iy * 20.0]])
                comp = create_skycomponent(flux=flux, frequency=frequency, direction=sc,
                                        polarisation_frame=PolarisationFrame('stokesI'))
                original_comps.append(comp)
                insert_skycomponent(model, comp)

    predict_skycomponent_visibility(vt, original_comps)


    cmodel = smooth_image(model)
    show_image(cmodel)
    plt.title("Smoothed model image")
    plt.savefig('1.jpg')
    #plt.show()

    comps = find_skycomponents(cmodel, fwhm=1.0, threshold=10.0, npixels=5)
    plt.clf()
    for i in range(len(comps)):
        ocomp, sep = find_nearest_skycomponent(comps[i].direction, original_comps)
        plt.plot((comps[i].direction.ra.value  - ocomp.direction.ra.value)/cmodel.wcs.wcs.cdelt[0],
                (comps[i].direction.dec.value - ocomp.direction.dec.value)/cmodel.wcs.wcs.cdelt[1],
                '.', color='r')

    plt.xlabel('delta RA (pixels)')
    plt.ylabel('delta DEC (pixels)')
    plt.title("Recovered - Original position offsets")
示例#4
0
def create_simulation_components(context,
                                 phasecentre,
                                 frequency,
                                 pbtype,
                                 offset_dir,
                                 flux_limit,
                                 pbradius,
                                 pb_npixel,
                                 pb_cellsize,
                                 show=False):
    """ Construct components for simulation
    
    :param context:
    :param phasecentre:
    :param frequency:
    :param pbtype:
    :param offset_dir:
    :param flux_limit:
    :param pbradius:
    :param pb_npixel:
    :param pb_cellsize:
    :return:
    """

    HWHM_deg, null_az_deg, null_el_deg = find_pb_width_null(pbtype, frequency)

    dec = phasecentre.dec.deg
    ra = phasecentre.ra.deg

    if context == 'singlesource':
        log.info("create_simulation_components: Constructing single component")
        offset = [HWHM_deg * offset_dir[0], HWHM_deg * offset_dir[1]]
        log.info(
            "create_simulation_components: Offset from pointing centre = %.3f, %.3f deg"
            % (offset[0], offset[1]))

        # The point source is offset to approximately the halfpower point
        offset_direction = SkyCoord(
            ra=(ra + offset[0] / numpy.cos(numpy.pi * dec / 180.0)) *
            units.deg,
            dec=(dec + offset[1]) * units.deg,
            frame='icrs',
            equinox='J2000')

        original_components = [
            Skycomponent(flux=[[1.0]],
                         direction=offset_direction,
                         frequency=frequency,
                         polarisation_frame=PolarisationFrame('stokesI'))
        ]

    elif context == 'null':
        log.info(
            "create_simulation_components: Constructing single component at the null"
        )

        offset = [null_az_deg * offset_dir[0], null_el_deg * offset_dir[1]]
        HWHM = HWHM_deg * numpy.pi / 180.0

        log.info(
            "create_simulation_components: Offset from pointing centre = %.3f, %.3f deg"
            % (offset[0], offset[1]))

        # The point source is offset to approximately the null point
        offset_direction = SkyCoord(
            ra=(ra + offset[0] / numpy.cos(numpy.pi * dec / 180.0)) *
            units.deg,
            dec=(dec + offset[1]) * units.deg,
            frame='icrs',
            equinox='J2000')

        original_components = [
            Skycomponent(flux=[[1.0]],
                         direction=offset_direction,
                         frequency=frequency,
                         polarisation_frame=PolarisationFrame('stokesI'))
        ]

    else:
        offset = [0.0, 0.0]
        # Make a skymodel from S3
        max_flux = 0.0
        total_flux = 0.0
        log.info("create_simulation_components: Constructing s3sky components")
        from wrappers.serial.simulation.testing_support import create_test_skycomponents_from_s3

        original_components = create_test_skycomponents_from_s3(
            flux_limit=flux_limit / 100.0,
            phasecentre=phasecentre,
            polarisation_frame=PolarisationFrame("stokesI"),
            frequency=numpy.array(frequency),
            radius=pbradius)
        log.info(
            "create_simulation_components: %d components before application of primary beam"
            % (len(original_components)))

        pbmodel = create_image(npixel=pb_npixel,
                               cellsize=pb_cellsize,
                               phasecentre=phasecentre,
                               frequency=frequency,
                               polarisation_frame=PolarisationFrame("stokesI"))
        pb = create_pb(pbmodel,
                       "MID_GAUSS",
                       pointingcentre=phasecentre,
                       use_local=False)
        pb_feko = create_pb(pbmodel,
                            pbtype,
                            pointingcentre=phasecentre,
                            use_local=True)
        pb.data = pb_feko.data[:, 0, ...][:, numpy.newaxis, ...]
        pb_applied_components = [
            copy_skycomponent(c) for c in original_components
        ]
        pb_applied_components = apply_beam_to_skycomponent(
            pb_applied_components, pb)
        filtered_components = []
        for icomp, comp in enumerate(pb_applied_components):
            if comp.flux[0, 0] > flux_limit:
                total_flux += comp.flux[0, 0]
                if abs(comp.flux[0, 0]) > max_flux:
                    max_flux = abs(comp.flux[0, 0])
                filtered_components.append(original_components[icomp])
        log.info(
            "create_simulation_components: %d components > %.3f Jy after application of primary beam"
            % (len(filtered_components), flux_limit))
        log.info(
            "create_simulation_components: Strongest components is %g (Jy)" %
            max_flux)
        log.info(
            "create_simulation_components: Total flux in components is %g (Jy)"
            % total_flux)
        original_components = [
            copy_skycomponent(c) for c in filtered_components
        ]
        if show:
            plt.clf()
            show_image(pb, components=original_components)
            plt.show(block=False)

        log.info("create_simulation_components: Created %d components" %
                 len(original_components))
        # Primary beam points to the phasecentre
        offset_direction = SkyCoord(ra=ra * units.deg,
                                    dec=dec * units.deg,
                                    frame='icrs',
                                    equinox='J2000')

    return original_components, offset_direction
        channel_model = create_image_from_visibility(
            vt,
            cellsize=cellsize,
            npixel=512,
            nchan=1,
            imagecentre=vis_list[0].phasecentre,
            polarisation_frame=PolarisationFrame('stokesIQUV'))

        beam = create_pb(channel_model,
                         telescope='VLA',
                         pointingcentre=vt.phasecentre,
                         use_local=False)
        beam.data /= numpy.max(beam.data)
        dirty, sumwt = invert_list_serial_workflow([vt], [channel_model])[0]
        print(sumwt)
        mosaic.data += dirty.data * beam.data
        mosaicsens.data += beam.data**2
        show_image(dirty)
        plt.show()

    show_image(mosaic, cm='Greys', title='Linear mosaic')
    plt.show()
    show_image(mosaicsens, cm='Greys', title='Linear mosaic sensitivity')
    plt.show()

    from wrappers.serial.image.operations import export_image_to_fits

    export_image_to_fits(mosaic, "mosaics.fits")
    export_image_to_fits(mosaicsens, "mosaicsens.fits")
# %%
示例#6
0
                                         npixels=12)
    for comp in all_components[:args.ninitial]:
        ical_components.append(comp)

    # ### Remove weaker of components that are too close (0.02 rad)
    idx, ical_components = remove_neighbouring_components(
        ical_components, 0.02)
    ical_components = sorted(ical_components,
                             key=lambda comp: numpy.max(comp.flux),
                             reverse=True)
    print("Voronoi decomposition based on %d point sources" %
          len(ical_components))

    print(qa_image(ical_restored, context='ICAL restored image'))
    show_image(ical_restored,
               title='ICAL restored image',
               vmax=0.3,
               vmin=-0.03)
    show_image(ical_restored,
               title='ICAL restored image',
               components=ical_components,
               vmax=0.3,
               vmin=-0.03)
    plt.show(block=block_plots)

    gaintable = create_gaintable_from_blockvisibility(block_vis)
    mpccal_skymodel = initialize_skymodel_voronoi(model, ical_components,
                                                  ical_skymodel[0].gaintable)

    ical_fluxes = [comp.flux[0, 0] for comp in ical_components]
    plt.clf()
    plt.semilogy(numpy.arange(len(all_fluxes)), all_fluxes, marker='.')
示例#7
0
     work_vis = arlexecute.compute(result, sync=True)
     for w in work_vis:
         all_skymodel_vis.data['vis'] += w.data['vis']
     assert numpy.max(numpy.abs(all_skymodel_vis.data['vis'])) > 0.0
 
 all_skymodel_blockvis = convert_visibility_to_blockvisibility(all_skymodel_vis)
 
 #######################################################################################################
 # Now proceed to run MPCCAL in ICAL mode i.e. with only one skymodel
 def progress(res, tl_list, gt_list, it, context='MPCCAL'):
     print('Iteration %d' % it)
     
     print(qa_image(res, context='%s residual image: iteration %d' % (context, it)))
     export_image_to_fits(res, arl_path("test_results/low-sims-mpc-%s-residual_iteration%d_rmax%.1f.fits" %
                                        (context, it, rmax)))
     show_image(res, title='%s residual image: iteration %d' % (context, it))
     plt.show(block=block_plots)
     
     combined_model = calculate_skymodel_equivalent_image(tl_list)
     print(qa_image(combined_model, context='Combined model: iteration %d' % it))
     export_image_to_fits(combined_model, arl_path("test_results/low-sims-mpc-%s-model_iteration%d_rmax%.1f.fits" %
                                                   (context, it, rmax)))
     
     plt.clf()
     for i in range(len(tl_list)):
         plt.plot(numpy.angle(tl_list[i].gaintable.gain[:, :, 0, 0, 0]).flatten(),
                  numpy.angle(gt_list[i]['T'].gain[:, :, 0, 0, 0]).flatten(),
                  '.')
     plt.xlabel('Current phase')
     plt.ylabel('Update to phase')
     plt.title("%s iteration%d: Change in phase" % (context, it))
            for ix in locations:
                if True:  # ix >= iy:
                    p = int(round(centre[0] + ix * spacing_pixels * numpy.sign(model.wcs.wcs.cdelt[0]))), \
                        int(round(centre[1] + iy * spacing_pixels * numpy.sign(model.wcs.wcs.cdelt[1])))
                    sc = pixel_to_skycoord(p[0], p[1], model.wcs)
                    # log.info("Component at (%f, %f) [0-rel] %s" % (p[0], p[1], str(sc)))
                    flux = numpy.array([[200.0]])  # numpy.array([[100.0 + 2.0 * ix + iy * 20.0]])
                    comp = create_skycomponent(flux=flux, frequency=frequency, direction=sc,
                                               polarisation_frame=PolarisationFrame('stokesI'))
                    original_comps.append(comp)
                    insert_skycomponent(model, comp)

        predict_skycomponent_visibility(vt, original_comps)

        cmodel = smooth_image(model)
        show_image(cmodel)
        plt.title("Smoothed model image")
        plt.savefig('%s/%s_smoothed.pdf' % (storedir, str(freq)))
        # plt.show()

        comps = find_skycomponents(cmodel, fwhm=1.0, threshold=10.0, npixels=5)
        plt.clf()
        log.info('Total components = %s' % len(comps))
        for i in range(len(comps)):
            ocomp, sep = find_nearest_skycomponent(comps[i].direction, original_comps)
            log.info('Position offset %d %f %f' % (i, comps[i].direction.ra.value - ocomp.direction.ra.value,
                                                   comps[i].direction.dec.value - ocomp.direction.dec.value))
            plt.plot((comps[i].direction.ra.value - ocomp.direction.ra.value),
                     (comps[i].direction.dec.value - ocomp.direction.dec.value),
                     '.', color='r')
            # plt.plot((comps[i].direction.ra.value - ocomp.direction.ra.value) / cmodel.wcs.wcs.cdelt[0],
示例#9
0
    flux_limit=flux_limit,
    phasecentre=phasecentre,
    frequency=frequency,
    polarisation_frame=PolarisationFrame('stokesI'),
    radius=0.2)

pb_gleam_components = apply_beam_to_skycomponent(original_gleam_components,
                                                 beam)
bright_components = filter_skycomponents_by_flux(pb_gleam_components,
                                                 flux_min=0.3)
all_components = filter_skycomponents_by_flux(pb_gleam_components,
                                              flux_min=flux_limit)

show_image(beam,
           components=bright_components,
           cm='Greys',
           title='Primary beam plus bright components',
           vmax=3.0)

lprint("Number of bright components %d" % len(bright_components))

# In[7]:

idx, filtered_bright_components = remove_neighbouring_components(
    bright_components, 0.01)
show_image(beam,
           components=filtered_bright_components,
           cm='Greys',
           title='Primary beam plus filtered bright components',
           vmax=3.0)
                comp = create_skycomponent(flux=flux, frequency=frequency, direction=sc,
                                           polarisation_frame=PolarisationFrame("stokesI"))
                comps.append(comp)
        predict_skycomponent_visibility(vt, comps)

        arlexecute.set_client(use_dask=True)

        dirty = create_image_from_visibility(vt, npixel=npixel, cellsize=cellsize,
                                             polarisation_frame=PolarisationFrame("stokesI"))
        vt = weight_visibility(vt, dirty)

        future = invert_list_arlexecute_workflow([vt], [dirty], context='2d')
        dirty, sumwt = arlexecute.compute(future, sync=True)[0]

        if doplot:
            show_image(dirty,cm='hot')
            plt.title("Dirty image")
            plt.savefig('%s/%s_dirty.pdf' % (results_dir, str(freq)))

        print("Max, min in dirty image = %.6f, %.6f, sumwt = %f" % (dirty.data.max(), dirty.data.min(), sumwt))

        export_image_to_fits(dirty, '%s/imaging-wterm_dirty.fits' % (results_dir))

        dirtyFacet = create_image_from_visibility(vt, npixel=npixel, npol=1, cellsize=cellsize)
        future = invert_list_arlexecute_workflow([vt], [dirtyFacet], facets=4, context='facets')
        dirtyFacet, sumwt = arlexecute.compute(future, sync=True)[0]
        dirtyFacet = smooth_image(dirtyFacet)
        if doplot:
            show_image(dirtyFacet,cm='hot')
            plt.title("Smoothed model image")
            plt.savefig('%s/%s_smooth.pdf' % (results_dir, str(freq)))
示例#11
0
        # plt.show()

        arlexecute.set_client(use_dask=True)

        dirty = create_image_from_visibility(
            vt,
            npixel=npixel,
            cellsize=cellsize,
            polarisation_frame=PolarisationFrame("stokesI"))
        vt = weight_visibility(vt, dirty)

        future = invert_list_arlexecute_workflow([vt], [dirty], context='2d')
        dirty, sumwt = arlexecute.compute(future, sync=True)[0]

        cmodel = smooth_image(dirty)
        show_image(cmodel)
        plt.title("Smoothed model image")
        plt.savefig('%s/%s_smoothed.pdf' % ('./', str(freq)))
        plt.show()

        comps = find_skycomponents(cmodel,
                                   fwhm=1.0,
                                   threshold=500.0,
                                   npixels=npixel // 60)
        plt.clf()
        log.info('Total components = %s' % len(comps))
        discomp.append(len(comps))
        x_offset = []
        y_offset = []
        offset = []