MEMORY_CAPACITY = int(1e+5) # simulator steps for learning interval LEARN_FREQ = 4 '''Environment Settings''' # number of environments for C51 N_ENVS = args.nenv # Total simulation step STEP_NUM = int((2e+7)+2) # gamma for MDP GAMMA = 0.99 # visualize for agent playing RENDERING = False # openai gym env name ENV_NAME = args.games+'NoFrameskip-v4' env = SubprocVecEnv([wrap_cover(ENV_NAME,args.seed+i) for i in range(N_ENVS)]) N_ACTIONS = env.action_space.n N_STATES = env.observation_space.shape '''Training settings''' # check GPU usage USE_GPU = torch.cuda.is_available() print('USE GPU: '+str(USE_GPU)) # mini-batch size BATCH_SIZE = 64 # learning rage LR = args.lr # epsilon-greedy EPSILON = 1.0 '''Save&Load Settings'''
LEARN_FREQ = 4 # quantile and option numbers for QUOTA N_QUANT = 200 N_OPTIONS = 10 '''Environment Settings''' # number of environments for C51 N_ENVS = 16 # Total simulation step STEP_NUM = int(1e+8) # gamma for MDP GAMMA = 0.99 # visualize for agent playing RENDERING = False # openai gym env name ENV_NAME = args.games + 'NoFrameskip-v4' env = SubprocVecEnv([wrap_cover(ENV_NAME) for i in range(N_ENVS)]) N_ACTIONS = env.action_space.n N_STATES = env.observation_space.shape '''Training settings''' # check GPU usage USE_GPU = torch.cuda.is_available() print('USE GPU: ' + str(USE_GPU)) # mini-batch size BATCH_SIZE = 32 # learning rage LR = 1e-4 # epsilon-greedy EPSILON = 1.0 EPSILON_O = 1.0 # option paramater Target_beta = 0.01
MEMORY_CAPACITY = int(1e+5) # simulator steps for learning interval LEARN_FREQ = 4 '''Environment Settings''' # number of environments for C51 N_ENVS = 16 # Total simulation step STEP_NUM = int((1e+7) + 2) # gamma for MDP GAMMA = 0.99 # visualize for agent playing RENDERING = False # openai gym env name ENV_NAME = args.games + 'NoFrameskip-v4' env = SubprocVecEnv( [wrap_cover(ENV_NAME, args.seed + i) for i in range(N_ENVS)]) N_ACTIONS = env.action_space.n N_STATES = env.observation_space.shape '''Training settings''' # check GPU usage USE_GPU = torch.cuda.is_available() print('USE GPU: ' + str(USE_GPU)) # mini-batch size BATCH_SIZE = 64 # learning rage LR = 1e-4 # epsilon-greedy EPSILON = 1.0 '''Save&Load Settings''' # check save/load SAVE = True