def filter_binary_closing(np_img,
                          disk_size=3,
                          iterations=1,
                          output_type="uint8"):
    """
  Close a binary object (bool, float, or uint8). Closing is a dilation followed by an erosion.
  Closing can be used to remove small holes.

  Args:
    np_img: Binary image as a NumPy array.
    disk_size: Radius of the disk structuring element used for closing.
    iterations: How many times to repeat.
    output_type: Type of array to return (bool, float, or uint8).

  Returns:
    NumPy array (bool, float, or uint8) following binary closing.
  """
    t = Time()
    if np_img.dtype == "uint8":
        np_img = np_img / 255
    result = sc_morph.binary_closing(np_img,
                                     sk_morphology.disk(disk_size),
                                     iterations=iterations)
    if output_type == "bool":
        pass
    elif output_type == "float":
        result = result.astype(float)
    else:
        result = result.astype("uint8") * 255
    util.np_info(result, "Binary Closing", t.elapsed())
    return result
def singleprocess_filtered_images_to_tiles(display=False,
                                           save_summary=True,
                                           save_data=True,
                                           save_top_tiles=True,
                                           html=True,
                                           image_list=None):
    """
  Generate tile summaries and tiles for training images using a single process.

  Args:
    display: If True, display tile summary images to screen.
    save_summary: If True, save tile summary images.
    save_data: If True, save tile data to csv file.
    save_top_tiles: If True, save top tiles to files.
    html: If True, generate HTML page to display tiled images
    image_list: Optionally specify a list of image slide names.
  """
    t = Time()
    print("Generating tile summaries\n")

    if image_list is not None:
        image_list, tile_summaries_dict = image_list_to_tiles(
            image_list, display, save_summary, save_data, save_top_tiles)
    else:
        num_training_slides = slide.get_num_training_slides()
        image_list, tile_summaries_dict = image_range_to_tiles(
            1, num_training_slides, display, save_summary, save_data,
            save_top_tiles)

    print("Time to generate tile summaries: %s\n" % str(t.elapsed()))

    if html:
        generate_tiled_html_result(image_list, tile_summaries_dict, save_data)
def filter_grays(rgb, tolerance=15, output_type="bool"):
    """
  Create a mask to filter out pixels where the red, green, and blue channel values are similar.

  Args:
    np_img: RGB image as a NumPy array.
    tolerance: Tolerance value to determine how similar the values must be in order to be filtered out
    output_type: Type of array to return (bool, float, or uint8).

  Returns:
    NumPy array representing a mask where pixels with similar red, green, and blue values have been masked out.
  """
    t = Time()
    (h, w, c) = rgb.shape

    rgb = rgb.astype(np.int)
    rg_diff = abs(rgb[:, :, 0] - rgb[:, :, 1]) <= tolerance
    rb_diff = abs(rgb[:, :, 0] - rgb[:, :, 2]) <= tolerance
    gb_diff = abs(rgb[:, :, 1] - rgb[:, :, 2]) <= tolerance
    result = ~(rg_diff & rb_diff & gb_diff)

    if output_type == "bool":
        pass
    elif output_type == "float":
        result = result.astype(float)
    else:
        result = result.astype("uint8") * 255
    util.np_info(result, "Filter Grays", t.elapsed())
    return result
def filter_binary_dilation(np_img,
                           disk_size=5,
                           iterations=1,
                           output_type="uint8"):
    """
  Dilate a binary object (bool, float, or uint8).

  Args:
    np_img: Binary image as a NumPy array.
    disk_size: Radius of the disk structuring element used for dilation.
    iterations: How many times to repeat the dilation.
    output_type: Type of array to return (bool, float, or uint8).

  Returns:
    NumPy array (bool, float, or uint8) where edges have been dilated.
  """
    t = Time()
    if np_img.dtype == "uint8":
        np_img = np_img / 255
    result = sc_morph.binary_dilation(np_img,
                                      sk_morphology.disk(disk_size),
                                      iterations=iterations)
    if output_type == "bool":
        pass
    elif output_type == "float":
        result = result.astype(float)
    else:
        result = result.astype("uint8") * 255
    util.np_info(result, "Binary Dilation", t.elapsed())
    return result
def filter_green_pen(rgb, output_type="bool"):
    """
  Create a mask to filter out green pen marks from a slide.

  Args:
    rgb: RGB image as a NumPy array.
    output_type: Type of array to return (bool, float, or uint8).

  Returns:
    NumPy array representing the mask.
  """
    t = Time()
    result = filter_green(rgb, red_upper_thresh=150, green_lower_thresh=160, blue_lower_thresh=140) & \
             filter_green(rgb, red_upper_thresh=70, green_lower_thresh=110, blue_lower_thresh=110) & \
             filter_green(rgb, red_upper_thresh=45, green_lower_thresh=115, blue_lower_thresh=100) & \
             filter_green(rgb, red_upper_thresh=30, green_lower_thresh=75, blue_lower_thresh=60) & \
             filter_green(rgb, red_upper_thresh=195, green_lower_thresh=220, blue_lower_thresh=210) & \
             filter_green(rgb, red_upper_thresh=225, green_lower_thresh=230, blue_lower_thresh=225) & \
             filter_green(rgb, red_upper_thresh=170, green_lower_thresh=210, blue_lower_thresh=200) & \
             filter_green(rgb, red_upper_thresh=20, green_lower_thresh=30, blue_lower_thresh=20) & \
             filter_green(rgb, red_upper_thresh=50, green_lower_thresh=60, blue_lower_thresh=40) & \
             filter_green(rgb, red_upper_thresh=30, green_lower_thresh=50, blue_lower_thresh=35) & \
             filter_green(rgb, red_upper_thresh=65, green_lower_thresh=70, blue_lower_thresh=60) & \
             filter_green(rgb, red_upper_thresh=100, green_lower_thresh=110, blue_lower_thresh=105) & \
             filter_green(rgb, red_upper_thresh=165, green_lower_thresh=180, blue_lower_thresh=180) & \
             filter_green(rgb, red_upper_thresh=140, green_lower_thresh=140, blue_lower_thresh=150) & \
             filter_green(rgb, red_upper_thresh=185, green_lower_thresh=195, blue_lower_thresh=195)
    if output_type == "bool":
        pass
    elif output_type == "float":
        result = result.astype(float)
    else:
        result = result.astype("uint8") * 255
    util.np_info(result, "Filter Green Pen", t.elapsed())
    return result
def filter_adaptive_equalization(np_img,
                                 nbins=256,
                                 clip_limit=0.01,
                                 output_type="uint8"):
    """
  Filter image (gray or RGB) using adaptive equalization to increase contrast in image, where contrast in local regions
  is enhanced.

  Args:
    np_img: Image as a NumPy array (gray or RGB).
    nbins: Number of histogram bins.
    clip_limit: Clipping limit where higher value increases contrast.
    output_type: Type of array to return (float or uint8).

  Returns:
     NumPy array (float or uint8) with contrast enhanced by adaptive equalization.
  """
    t = Time()
    adapt_equ = sk_exposure.equalize_adapthist(np_img,
                                               nbins=nbins,
                                               clip_limit=clip_limit)
    if output_type == "float":
        pass
    else:
        adapt_equ = (adapt_equ * 255).astype("uint8")
    util.np_info(adapt_equ, "Adapt Equalization", t.elapsed())
    return adapt_equ
def filter_remove_small_holes(np_img, min_size=3000, output_type="uint8"):
    """
  Filter image to remove small holes less than a particular size.

  Args:
    np_img: Image as a NumPy array of type bool.
    min_size: Remove small holes below this size.
    output_type: Type of array to return (bool, float, or uint8).

  Returns:
    NumPy array (bool, float, or uint8).
  """
    t = Time()

    rem_sm = sk_morphology.remove_small_holes(np_img, min_size=min_size)

    if output_type == "bool":
        pass
    elif output_type == "float":
        rem_sm = rem_sm.astype(float)
    else:
        rem_sm = rem_sm.astype("uint8") * 255

    util.np_info(rem_sm, "Remove Small Holes", t.elapsed())
    return rem_sm
def filter_canny(np_img,
                 sigma=1,
                 low_threshold=0,
                 high_threshold=25,
                 output_type="uint8"):
    """
  Filter image based on Canny algorithm edges.

  Args:
    np_img: Image as a NumPy array.
    sigma: Width (std dev) of Gaussian.
    low_threshold: Low hysteresis threshold value.
    high_threshold: High hysteresis threshold value.
    output_type: Type of array to return (bool, float, or uint8).

  Returns:
    NumPy array (bool, float, or uint8) representing Canny edge map (binary image).
  """
    t = Time()
    can = sk_feature.canny(np_img,
                           sigma=sigma,
                           low_threshold=low_threshold,
                           high_threshold=high_threshold)
    if output_type == "bool":
        pass
    elif output_type == "float":
        can = can.astype(float)
    else:
        can = can.astype("uint8") * 255
    util.np_info(can, "Canny Edges", t.elapsed())
    return can
def save_tile_data(tile_summary):
    """
  Save tile data to csv file.

  Args
    tile_summary: TimeSummary object.
  """

    time = Time()

    csv = summary_title(tile_summary) + "\n" + summary_stats(tile_summary)

    csv += "\n\n\nTile Num,Row,Column,Tissue %,Tissue Quantity,Col Start,Row Start,Col End,Row End,Col Size,Row Size," + \
           "Color Factor,S and V Factor,Quantity Factor,Score\n"

    for t in tile_summary.tiles:
        line = "%d,%d,%d,%4.2f,%s,%d,%d,%d,%d,%d,%d,%4.0f,%4.2f,%4.2f,%0.4f\n" % (
            t.tile_num, t.r, t.c, t.tissue_percentage,
            t.tissue_quantity().name, t.c_s, t.r_s, t.c_e, t.r_e,
            t.c_e - t.c_s, t.r_e - t.r_s, t.color_factor, t.s_and_v_factor,
            t.quantity_factor, t.score)
        csv += line

    data_path = slide.get_tile_data_path(tile_summary.slide_name)
    csv_file = open(data_path, "w")
    csv_file.write(csv)
    csv_file.close()

    print("%-20s | Time: %-14s  Name: %s" %
          ("Save Tile Data", str(time.elapsed()), data_path))
示例#10
0
def singleprocess_training_slides_to_images():
    """
  Convert all WSI training slides to smaller images using a single process.
  """
    t = Time()

    num_train_images = get_num_training_slides()
    training_slide_range_to_images(1, num_train_images)

    t.elapsed_display()
def save_tile_summary_image(pil_img, slide_name):
    """
  Save a tile summary image and thumbnail to the file system.

  Args:
    pil_img: Image as a PIL Image.
    slide_name: The slide name.
  """
    t = Time()
    filepath = slide.get_tile_summary_image_path(slide_name)
    pil_img.save(filepath)
    print("%-20s | Time: %-14s  Name: %s" %
          ("Save Tile Sum", str(t.elapsed()), filepath))
def save_top_tiles_on_original_image(pil_img, slide_name):
    """
  Save a top tiles on original image and thumbnail to the file system.

  Args:
    pil_img: Image as a PIL Image.
    slide_name: The slide name.
  """
    t = Time()
    filepath = slide.get_top_tiles_on_original_image_path(slide_name)
    pil_img.save(filepath)
    print("%-20s | Time: %-14s  Name: %s" %
          ("Save Top Orig", str(t.elapsed()), filepath))
示例#13
0
def multiprocess_training_slides_to_images():
    """
  Convert all WSI training slides to smaller images using multiple processes (one process per core).
  Each process will process a range of slide numbers.
  """
    timer = Time()

    # how many processes to use
    num_processes = multiprocessing.cpu_count()
    pool = multiprocessing.Pool(num_processes)

    num_train_images = get_num_training_slides()
    if num_processes > num_train_images:
        num_processes = num_train_images
    images_per_process = num_train_images / num_processes

    print("Number of processes: " + str(num_processes))
    print("Number of training images: " + str(num_train_images))

    # each task specifies a range of slides
    tasks = []
    for num_process in range(1, num_processes + 1):
        start_index = (num_process - 1) * images_per_process + 1
        end_index = num_process * images_per_process
        start_index = int(start_index)
        end_index = int(end_index)
        tasks.append((start_index, end_index))
        if start_index == end_index:
            print("Task #" + str(num_process) + ": Process slide " +
                  str(start_index))
        else:
            print("Task #" + str(num_process) + ": Process slides " +
                  str(start_index) + " to " + str(end_index))

    # start tasks
    results = []
    for t in tasks:
        results.append(pool.apply_async(training_slide_range_to_images, t))

    for result in results:
        (start_ind, end_ind) = result.get()
        if start_ind == end_ind:
            print("Done converting slide %d" % start_ind)
        else:
            print("Done converting slides %d through %d" %
                  (start_ind, end_ind))

    timer.elapsed_display()
def filter_local_equalization(np_img, disk_size=50):
    """
  Filter image (gray) using local equalization, which uses local histograms based on the disk structuring element.

  Args:
    np_img: Image as a NumPy array.
    disk_size: Radius of the disk structuring element used for the local histograms

  Returns:
    NumPy array with contrast enhanced using local equalization.
  """
    t = Time()
    local_equ = sk_filters.rank.equalize(np_img,
                                         selem=sk_morphology.disk(disk_size))
    util.np_info(local_equ, "Local Equalization", t.elapsed())
    return local_equ
def save_filtered_image(np_img, slide_name, filter_num, filter_text):
    """
  Save a filtered image to the file system.

  Args:
    np_img: Image as a NumPy array.
    slide_name:  The slide number.
    filter_num: The filter number.
    filter_text: Descriptive text to add to the image filename.
  """
    t = Time()
    filepath = slide.get_filter_image_path(slide_name, filter_num, filter_text)
    pil_img = util.np_to_pil(np_img)
    pil_img.save(filepath)
    print("%-20s | Time: %-14s  Name: %s" %
          ("Save Image", str(t.elapsed()), filepath))
def apply_filters_to_image(slide_name, save=True, display=False):
    """
  Apply a set of filters to an image and optionally save and/or display filtered images.

  Args:
    slide_name: The slide name.
    save: If True, save filtered images.
    display: If True, display filtered images to screen.

  Returns:
    Tuple consisting of 1) the resulting filtered image as a NumPy array, and 2) dictionary of image information
    (used for HTML page generation).
  """
    t = Time()
    print(f"Processing slide {slide_name}")

    info = dict()

    if save and not os.path.exists(slide.FILTER_DIR):
        os.makedirs(slide.FILTER_DIR)

    np_orig = slide.get_slide(slide_name)
    filtered_np_img = apply_image_filters(np_orig,
                                          slide_name,
                                          info,
                                          save=False,
                                          display=False)

    if save:
        result_path = slide.get_filter_image_result(slide_name)
        pil_img = util.np_to_pil(filtered_np_img)
        pil_img.save(result_path)

    return filtered_np_img, info
示例#17
0
def slide_info(display_all_properties=False):
    """
  Display information (such as properties) about training images.

  Args:
    display_all_properties: If True, display all available slide properties.
  """
    t = Time()

    num_train_images = get_num_training_slides()
    obj_pow_20_list = []
    obj_pow_40_list = []
    obj_pow_other_list = []
    for slide_num in range(1, num_train_images + 1):
        slide_filepath = get_training_slide_path(slide_num)
        print("\nOpening Slide #%d: %s" % (slide_num, slide_filepath))
        slide = open_slide(slide_filepath)
        print("Level count: %d" % slide.level_count)
        print("Level dimensions: " + str(slide.level_dimensions))
        print("Level downsamples: " + str(slide.level_downsamples))
        print("Dimensions: " + str(slide.dimensions))
        objective_power = int(
            slide.properties[openslide.PROPERTY_NAME_OBJECTIVE_POWER])
        print("Objective power: " + str(objective_power))
        if objective_power == 20:
            obj_pow_20_list.append(slide_num)
        elif objective_power == 40:
            obj_pow_40_list.append(slide_num)
        else:
            obj_pow_other_list.append(slide_num)
        print("Associated images:")
        for ai_key in slide.associated_images.keys():
            print("  " + str(ai_key) + ": " +
                  str(slide.associated_images.get(ai_key)))
        print("Format: " + str(slide.detect_format(slide_filepath)))
        if display_all_properties:
            print("Properties:")
            for prop_key in slide.properties.keys():
                print("  Property: " + str(prop_key) + ", value: " +
                      str(slide.properties.get(prop_key)))

    print("\n\nSlide Magnifications:")
    print("  20x Slides: " + str(obj_pow_20_list))
    print("  40x Slides: " + str(obj_pow_40_list))
    print("  ??x Slides: " + str(obj_pow_other_list) + "\n")

    t.elapsed_display()
def filter_rgb_to_hsv(np_img, display_np_info=True):
    """
  Filter RGB channels to HSV (Hue, Saturation, Value).

  Args:
    np_img: RGB image as a NumPy array.
    display_np_info: If True, display NumPy array info and filter time.

  Returns:
    Image as NumPy array in HSV representation.
  """

    if display_np_info:
        t = Time()
    hsv = sk_color.rgb2hsv(np_img)
    if display_np_info:
        util.np_info(hsv, "RGB to HSV", t.elapsed())
    return hsv
def filter_complement(np_img, output_type="uint8"):
    """
  Obtain the complement of an image as a NumPy array.

  Args:
    np_img: Image as a NumPy array.
    type: Type of array to return (float or uint8).

  Returns:
    Complement image as Numpy array.
  """
    t = Time()
    if output_type == "float":
        complement = 1.0 - np_img
    else:
        complement = 255 - np_img
    util.np_info(complement, "Complement", t.elapsed())
    return complement
def filter_remove_small_objects(np_img,
                                min_size=3000,
                                avoid_overmask=True,
                                overmask_thresh=95,
                                output_type="uint8"):
    """
  Filter image to remove small objects (connected components) less than a particular minimum size. If avoid_overmask
  is True, this function can recursively call itself with progressively smaller minimum size objects to remove to
  reduce the amount of masking that this filter performs.

  Args:
    np_img: Image as a NumPy array of type bool.
    min_size: Minimum size of small object to remove.
    avoid_overmask: If True, avoid masking above the overmask_thresh percentage.
    overmask_thresh: If avoid_overmask is True, avoid masking above this threshold percentage value.
    output_type: Type of array to return (bool, float, or uint8).

  Returns:
    NumPy array (bool, float, or uint8).
  """
    t = Time()

    rem_sm = np_img.astype(bool)  # make sure mask is boolean
    rem_sm = sk_morphology.remove_small_objects(rem_sm, min_size=min_size)
    mask_percentage = mask_percent(rem_sm)
    if (mask_percentage >=
            overmask_thresh) and (min_size >= 1) and (avoid_overmask is True):
        new_min_size = min_size / 2
        #print("Mask percentage %3.2f%% >= overmask threshold %3.2f%% for Remove Small Objs size %d, so try %d" % (
        #mask_percentage, overmask_thresh, min_size, new_min_size))
        rem_sm = filter_remove_small_objects(np_img, new_min_size,
                                             avoid_overmask, overmask_thresh,
                                             output_type)
    np_img = rem_sm

    if output_type == "bool":
        pass
    elif output_type == "float":
        np_img = np_img.astype(float)
    else:
        np_img = np_img.astype("uint8") * 255

    util.np_info(np_img, "Remove Small Objs", t.elapsed())
    return np_img
def filter_green_channel(np_img,
                         green_thresh=200,
                         avoid_overmask=True,
                         overmask_thresh=90,
                         output_type="bool"):
    """
  Create a mask to filter out pixels with a green channel value greater than a particular threshold, since hematoxylin
  and eosin are purplish and pinkish, which do not have much green to them.

  Args:
    np_img: RGB image as a NumPy array.
    green_thresh: Green channel threshold value (0 to 255). If value is greater than green_thresh, mask out pixel.
    avoid_overmask: If True, avoid masking above the overmask_thresh percentage.
    overmask_thresh: If avoid_overmask is True, avoid masking above this threshold percentage value.
    output_type: Type of array to return (bool, float, or uint8).

  Returns:
    NumPy array representing a mask where pixels above a particular green channel threshold have been masked out.
  """
    t = Time()

    g = np_img[:, :, 1]
    gr_ch_mask = (g < green_thresh) & (g > 0)
    mask_percentage = mask_percent(gr_ch_mask)
    if (mask_percentage >= overmask_thresh) and (green_thresh < 255) and (
            avoid_overmask is True):
        new_green_thresh = math.ceil((255 - green_thresh) / 2 + green_thresh)
        #print(
        #"Mask percentage %3.2f%% >= overmask threshold %3.2f%% for Remove Green Channel green_thresh=%d, so try %d" % (
        #mask_percentage, overmask_thresh, green_thresh, new_green_thresh))
        gr_ch_mask = filter_green_channel(np_img, new_green_thresh,
                                          avoid_overmask, overmask_thresh,
                                          output_type)
    np_img = gr_ch_mask

    if output_type == "bool":
        pass
    elif output_type == "float":
        np_img = np_img.astype(float)
    else:
        np_img = np_img.astype("uint8") * 255

    util.np_info(np_img, "Filter Green Channel", t.elapsed())
    return np_img
def filter_contrast_stretch(np_img, low=40, high=60):
    """
  Filter image (gray or RGB) using contrast stretching to increase contrast in image based on the intensities in
  a specified range.

  Args:
    np_img: Image as a NumPy array (gray or RGB).
    low: Range low value (0 to 255).
    high: Range high value (0 to 255).

  Returns:
    Image as NumPy array with contrast enhanced.
  """
    t = Time()
    low_p, high_p = np.percentile(np_img, (low * 100 / 255, high * 100 / 255))
    contrast_stretch = sk_exposure.rescale_intensity(np_img,
                                                     in_range=(low_p, high_p))
    util.np_info(contrast_stretch, "Contrast Stretch", t.elapsed())
    return contrast_stretch
def singleprocess_apply_filters_to_images(save=True,
                                          display=False,
                                          html=False,
                                          image_name_list=None):
    """
  Apply a set of filters to training images and optionally save and/or display the filtered images.

  Args:
    save: If True, save filtered images.
    display: If True, display filtered images to screen.
    html: If True, generate HTML page to display filtered images.
    image_name_list: Optionally specify a list of image slide names.
  """
    t = Time()
    print("Applying filters to images\n")

    if image_name_list is not None:
        _, info = apply_filters_to_image_list(image_name_list, save, display)

    print("Time to apply filters to all images: %s\n" % str(t.elapsed()))
def filter_rgb_to_grayscale(np_img, output_type="uint8"):
    """
  Convert an RGB NumPy array to a grayscale NumPy array.

  Shape (h, w, c) to (h, w).

  Args:
    np_img: RGB Image as a NumPy array.
    output_type: Type of array to return (float or uint8)

  Returns:
    Grayscale image as NumPy array with shape (h, w).
  """
    t = Time()
    # Another common RGB ratio possibility: [0.299, 0.587, 0.114]
    grayscale = np.dot(np_img[..., :3], [0.2125, 0.7154, 0.0721])
    if output_type != "float":
        grayscale = grayscale.astype("uint8")
    util.np_info(grayscale, "Gray", t.elapsed())
    return grayscale
def filter_hed_to_eosin(np_img, output_type="uint8"):
    """
  Obtain Eosin channel from HED NumPy array and rescale it (for example, to 0 to 255 for uint8) for increased
  contrast.

  Args:
    np_img: HED image as a NumPy array.
    output_type: Type of array to return (float or uint8).

  Returns:
    NumPy array for Eosin channel.
  """
    t = Time()
    eosin = np_img[:, :, 1]
    if output_type == "float":
        eosin = sk_exposure.rescale_intensity(eosin, out_range=(0.0, 1.0))
    else:
        eosin = (sk_exposure.rescale_intensity(
            eosin, out_range=(0, 255))).astype("uint8")
    util.np_info(eosin, "HED to Eosin", t.elapsed())
    return eosin
def filter_kmeans_segmentation(np_img, compactness=10, n_segments=800):
    """
  Use K-means segmentation (color/space proximity) to segment RGB image where each segment is
  colored based on the average color for that segment.

  Args:
    np_img: Binary image as a NumPy array.
    compactness: Color proximity versus space proximity factor.
    n_segments: The number of segments.

  Returns:
    NumPy array (uint8) representing 3-channel RGB image where each segment has been colored based on the average
    color for that segment.
  """
    t = Time()
    labels = sk_segmentation.slic(np_img,
                                  compactness=compactness,
                                  n_segments=n_segments)
    result = sk_color.label2rgb(labels, np_img, kind='avg')
    util.np_info(result, "K-Means Segmentation", t.elapsed())
    return result
def filter_otsu_threshold(np_img, output_type="uint8"):
    """
  Compute Otsu threshold on image as a NumPy array and return binary image based on pixels above threshold.

  Args:
    np_img: Image as a NumPy array.
    output_type: Type of array to return (bool, float, or uint8).

  Returns:
    NumPy array (bool, float, or uint8) where True, 1.0, and 255 represent a pixel above Otsu threshold.
  """
    t = Time()
    otsu_thresh_value = sk_filters.threshold_otsu(np_img)
    otsu = (np_img > otsu_thresh_value)
    if output_type == "bool":
        pass
    elif output_type == "float":
        otsu = otsu.astype(float)
    else:
        otsu = otsu.astype("uint8") * 255
    util.np_info(otsu, "Otsu Threshold", t.elapsed())
    return otsu
def filter_rgb_to_hed(np_img, output_type="uint8"):
    """
  Filter RGB channels to HED (Hematoxylin - Eosin - Diaminobenzidine) channels.

  Args:
    np_img: RGB image as a NumPy array.
    output_type: Type of array to return (float or uint8).

  Returns:
    NumPy array (float or uint8) with HED channels.
  """
    t = Time()
    hed = sk_color.rgb2hed(np_img)
    if output_type == "float":
        hed = sk_exposure.rescale_intensity(hed, out_range=(0.0, 1.0))
    else:
        hed = (sk_exposure.rescale_intensity(hed,
                                             out_range=(0,
                                                        255))).astype("uint8")

    util.np_info(hed, "RGB to HED", t.elapsed())
    return hed
def filter_green(rgb,
                 red_upper_thresh,
                 green_lower_thresh,
                 blue_lower_thresh,
                 output_type="bool",
                 display_np_info=False):
    """
  Create a mask to filter out greenish colors, where the mask is based on a pixel being below a
  red channel threshold value, above a green channel threshold value, and above a blue channel threshold value.
  Note that for the green ink, the green and blue channels tend to track together, so we use a blue channel
  lower threshold value rather than a blue channel upper threshold value.

  Args:
    rgb: RGB image as a NumPy array.
    red_upper_thresh: Red channel upper threshold value.
    green_lower_thresh: Green channel lower threshold value.
    blue_lower_thresh: Blue channel lower threshold value.
    output_type: Type of array to return (bool, float, or uint8).
    display_np_info: If True, display NumPy array info and filter time.

  Returns:
    NumPy array representing the mask.
  """
    if display_np_info:
        t = Time()
    r = rgb[:, :, 0] < red_upper_thresh
    g = rgb[:, :, 1] > green_lower_thresh
    b = rgb[:, :, 2] > blue_lower_thresh
    result = ~(r & g & b)
    if output_type == "bool":
        pass
    elif output_type == "float":
        result = result.astype(float)
    else:
        result = result.astype("uint8") * 255
    if display_np_info:
        util.np_info(result, "Filter Green", t.elapsed())
    return result
def save_display_tile(tile, save=True, display=False):
    """
  Save and/or display a tile image.

  Args:
    tile: Tile object.
    save: If True, save tile image.
    display: If True, dispaly tile image.
  """
    tile_pil_img = tile_to_pil_tile(tile)

    if save:
        t = Time()
        img_path = slide.get_tile_image_path(tile)
        dir = os.path.dirname(img_path)
        if not os.path.exists(dir):
            os.makedirs(dir)
        tile_pil_img.save(img_path)
        print("%-20s | Time: %-14s  Name: %s" %
              ("Save Tile", str(t.elapsed()), img_path))

    if display:
        tile_pil_img.show()