示例#1
0
    def test_rp_calculated_for_all_necessary_vars(self):
        yearmon = dates.get_next_yearmon(self.config.historical_yearmons()[-1])
        target = dates.add_months(yearmon, 3)
        model = self.config.models()[0]
        member = self.config.forecast_ensemble_members(model, yearmon)[0]

        steps = self.get_steps(yearmon, yearmon)

        ws = self.config.workspace()

        # 1-month observed rp
        rp_step = step_for_target(steps,
                                  ws.return_period(yearmon=yearmon, window=1))
        for v in self.config.lsm_rp_vars() + self.config.forcing_rp_vars():
            self.assertIn(
                ws.fit_obs(var=v,
                           window=1,
                           month=dates.parse_yearmon(yearmon)[1]),
                rp_step.dependencies)

        # 1-month forecast rp
        rp_step = step_for_target(
            steps,
            ws.return_period(yearmon=yearmon,
                             model=model,
                             target=target,
                             member=member,
                             window=1))
        for v in self.config.lsm_rp_vars() + self.config.forcing_rp_vars():
            self.assertIn(
                ws.fit_obs(var=v,
                           window=1,
                           month=dates.parse_yearmon(target)[1]),
                rp_step.dependencies)

        # 3-month observed rp
        rp_step = step_for_target(steps,
                                  ws.return_period(yearmon=yearmon, window=3))
        for v, stats in self.config.lsm_integrated_vars().items():
            for stat in stats:
                self.assertIn(
                    ws.fit_obs(var=v,
                               window=3,
                               stat=stat,
                               month=dates.parse_yearmon(yearmon)[1]),
                    rp_step.dependencies)

        # 3-month forecast rp
        rp_step = step_for_target(
            steps,
            ws.return_period(yearmon=yearmon,
                             model=model,
                             target=target,
                             member=member,
                             window=3))
        for v in self.config.lsm_integrated_var_names():
            self.assertTrue(
                ws.fit_obs(
                    var=v, window=3, month=dates.parse_yearmon(target)[1]) in
                rp_step.dependencies)
示例#2
0
文件: cfsv2.py 项目: isciences/wsim
    def available_hindcasts(self, target_month: int, lead: int) -> List[str]:
        forecast_month = target_month - lead
        if forecast_month < 1:
            forecast_month += 12

        for forecast_year in range(self.min_fit_year - 1,
                                   self.max_fit_year + 1):
            target = dates.add_months(
                dates.format_yearmon(forecast_year, forecast_month), lead)
            target_year, _ = dates.parse_yearmon(target)

            if target_year > self.max_fit_year:
                continue

            assert dates.parse_yearmon(target)[1] == target_month

            for day in HINDCAST_DATES_FOR_MONTH[forecast_month]:
                for hour in (0, 6, 12, 18):
                    timestamp = '{:04d}{:02d}{:02d}{:02d}'.format(
                        forecast_year, forecast_month, day, hour)

                    if timestamp in MISSING_HINDCASTS and target in MISSING_HINDCASTS[
                            timestamp]:
                        continue

                    if timestamp in CORRUPT_HINDCASTS and target in CORRUPT_HINDCASTS[
                            timestamp]:
                        continue

                    yield timestamp, target
示例#3
0
    def p_wetdays(self, *, yearmon: str, target: str, member: str) -> Vardef:
        _, month = dates.parse_yearmon(target)

        return paths.Vardef(
            os.path.join(self.subdir(),
                         'mean_p_wetdays_month_{:02d}.nc'.format(month)),
            'pWetDays')
示例#4
0
    def precip_monthly(self, *, yearmon: str, target: str,
                       member: str) -> Vardef:
        _, month = dates.parse_yearmon(target)

        return paths.Vardef(
            os.path.join(self.subdir(),
                         'mean_prate_month_{:02d}.nc'.format(month)), 'Pr')
示例#5
0
    def prep_steps(self, *, yearmon: str) -> List[Step]:
        """
        Prep steps are data preparation tasks that are executed once per model iteration.
        They may include downloading, unpackaging, aggregation, or conversion of data inputs.

        :param yearmon: yearmon of model iteration
        :return: a list of Steps
        """
        steps = []

        year, month = dates.parse_yearmon(yearmon)

        # Extract netCDF of monthly temperature from full binary file
        steps += ghcn_cams.extract_monthly_temperature(grib_file=self.ghcn_cams_grib(),
                                                       output_filename=self.temp_monthly(yearmon=yearmon).file,
                                                       yearmon=yearmon)
        steps += precl.download_precl(yearmon=yearmon,
                                      output_filename=self.precip_monthly(yearmon=yearmon).file)

        if year >= 1979:
            steps += cpc_daily_precipitation.download_monthly_precipitation(
                yearmon=yearmon,
                workdir=os.path.join(self.source,
                                     'NCEP',
                                     'daily_precip'),
                wetdays_fname=self.p_wetdays(yearmon=yearmon).file)

        return steps
示例#6
0
    def prep_steps(self, *, yearmon: str) -> List[Step]:
        """
        Prep steps are data preparation tasks that are executed once per model iteration.
        They may include downloading, unpackaging, aggregation, or conversion of data inputs.

        :param yearmon: yearmon of model iteration
        :return: a list of Steps
        """
        steps = []

        year, month = dates.parse_yearmon(yearmon)

        # Extract netCDF of monthly precipitation from full binary file
        steps.append(
            Step(
                targets=self.precip_monthly(yearmon=yearmon).file,
                dependencies=self.full_precip_file(),
                commands=[[
                    os.path.join('{BINDIR}', 'utils',
                                 'noaa_global_leaky_bucket',
                                 'read_binary_grid.R'),
                    '--input',
                    self.full_precip_file(),
                    '--update_url',
                    'ftp://ftp.cpc.ncep.noaa.gov/wd51yf/global_monthly/gridded_binary/p.long',
                    '--output',
                    self.precip_monthly(yearmon=yearmon).file,
                    '--var',
                    'P',
                    '--yearmon',
                    yearmon,
                ]]))

        # Extract netCDF of monthly temperature from full binary file
        steps.append(
            Step(
                targets=self.temp_monthly(yearmon=yearmon).file,
                dependencies=self.full_temp_file(),
                commands=[[
                    os.path.join('{BINDIR}', 'utils',
                                 'noaa_global_leaky_bucket',
                                 'read_binary_grid.R'), '--input',
                    self.full_temp_file(), '--update_url',
                    'ftp://ftp.cpc.ncep.noaa.gov/wd51yf/global_monthly/gridded_binary/t.long',
                    '--output',
                    self.temp_monthly(yearmon=yearmon).file, '--var', 'T',
                    '--yearmon', yearmon
                ]]))

        if year >= 1979:
            steps += cpc_daily_precipitation.download_monthly_precipitation(
                yearmon=yearmon,
                workdir=os.path.join(self.source, 'NCEP', 'daily_precip'),
                wetdays_fname=self.p_wetdays(yearmon=yearmon).file)

        return steps
示例#7
0
    def p_wetdays(self, *, yearmon: str) -> paths.Vardef:
        year, month = dates.parse_yearmon(yearmon)

        if year < 1979:
            return self.mean_p_wetdays(month)
        else:
            return paths.Vardef(
                os.path.join(self.source, 'NCEP', 'wetdays',
                             'wetdays_{yearmon}.nc'.format(yearmon=yearmon)),
                'pWetDays')
示例#8
0
文件: nmme.py 项目: isciences/wsim
    def prep_steps(self, *, yearmon: str, target: str,
                   member: str) -> List[Step]:
        steps = []

        _, nmme_month = dates.parse_yearmon(wsim_to_nmme_yearmon(yearmon))

        # Hack to only download these once although they are required for
        # all members / forecast targets
        if int(member) == 1 and target == dates.add_months(yearmon, 1):
            steps += self.download_realtime_anomalies(
                nmme_yearmon=wsim_to_nmme_yearmon(yearmon))

        output = self.forecast_raw(yearmon=yearmon,
                                   target=target,
                                   member=member).split('::')[0]

        steps.append(
            Step(targets=output,
                 dependencies=[
                     self.forecast_anom(
                         nmme_yearmon=wsim_to_nmme_yearmon(yearmon),
                         varname='T'),
                     self.forecast_anom(
                         nmme_yearmon=wsim_to_nmme_yearmon(yearmon),
                         varname='Pr'),
                     self.forecast_clim(nmme_month=nmme_month, varname='T'),
                     self.forecast_clim(nmme_month=nmme_month, varname='Pr')
                 ],
                 commands=[[
                     os.path.join('{BINDIR}', 'utils', 'nmme',
                                  'extract_nmme_forecast.R'), '--clim_precip',
                     self.forecast_clim(nmme_month=nmme_month,
                                        varname='Pr'), '--clim_temp',
                     self.forecast_clim(nmme_month=nmme_month, varname='T'),
                     '--anom_precip',
                     self.forecast_anom(
                         nmme_yearmon=wsim_to_nmme_yearmon(yearmon),
                         varname='Pr'), '--anom_temp',
                     self.forecast_anom(
                         nmme_yearmon=wsim_to_nmme_yearmon(yearmon),
                         varname='T'), '--member', member, '--lead',
                     str(
                         dates.get_lead_months(wsim_to_nmme_yearmon(yearmon),
                                               target)), '--output', output
                 ]]))

        return steps
示例#9
0
文件: cfsv2.py 项目: isciences/wsim
    def last_7_days_of_previous_month(yearmon: str,
                                      lag_hours: Optional[int] = None
                                      ) -> List[str]:
        # Build an ensemble of 28 forecasts by taking the four
        # forecasts issued on each of the last 7 days of the month.
        last_day = dates.get_last_day_of_month(yearmon)

        year, month = dates.parse_yearmon(yearmon)

        members = [
            datetime.datetime(year, month, day, hour)
            for day in range(last_day - 6, last_day + 1)
            for hour in (0, 6, 12, 18)
        ]

        if lag_hours is not None:
            members = [
                m for m in members if datetime.datetime.utcnow() -
                m > datetime.timedelta(hours=lag_hours)
            ]

        return [m.strftime('%Y%m%d%H') for m in members]
示例#10
0
 def p_wetdays(self, *, yearmon):
     year, mon = parse_yearmon(yearmon)
     if year >= 1979:
         return Vardef('wetdays_{}.tif'.format(yearmon), '1')
     else:
         return Vardef('wetdays_norms_{}.tif'.format(mon), '1')
示例#11
0
文件: cfsv2.py 项目: isciences/wsim
 def p_wetdays(self, *, yearmon=None, target, member=None):
     _, month = dates.parse_yearmon(target)
     return self.observed().mean_p_wetdays(month=month)
示例#12
0
    def precip_monthly(self, *, yearmon: str) -> paths.Vardef:
        year, _ = dates.parse_yearmon(yearmon)

        return paths.Vardef(os.path.join(self.source, 'PRECL', str(year), 'precl_{yearmon}.nc'.format(yearmon=yearmon)),
                            'Pr')
示例#13
0
    def temp_monthly(self, *, yearmon: str) -> paths.Vardef:
        year, _ = dates.parse_yearmon(yearmon)

        return paths.Vardef(os.path.join(self.source, 'GHCN_CAMS', str(year), 'ghcn_cams_{yearmon}.nc'.format(yearmon=yearmon)), 'T')