示例#1
0
    def retrieve_and_process_data(self):
        """
        Query the data, output wikitext
        """
        logging.info("Retrieving grouping information...")

        try:
            (groupings_counts,
             groupings_groupings) = self.get_grouping_information()
        except QueryException as e:
            logging.error(f('No groupings found.'))
            raise e

        logging.info(f('Grouping retrieved: {len(groupings_counts)}'))
        for column_entry in self.columns:
            column_entry_key = column_entry.get_key()
            self.column_data[
                column_entry_key] = self._get_grouping_counts_from_sparql(
                    column_entry.get_info_query(self))

        text = self.get_header()

        for (grouping, item_count) in sorted(groupings_counts.items(),
                                             key=lambda t: t[1],
                                             reverse=True):
            higher_grouping = groupings_groupings.get(grouping)
            text += self.make_stats_for_one_grouping(grouping, item_count,
                                                     higher_grouping)

        if self.stats_for_no_group:
            text += self.make_stats_for_no_group()

        text += self.make_footer()

        return text
示例#2
0
    def get_info_query(self, property_statistics):
        """
        Get the usage counts for a column for the groupings

        :return: (str) SPARQL query
        """
        query = f("""
SELECT ?grouping (COUNT(DISTINCT ?entity) as ?count) WHERE {{
  ?entity {property_statistics.selector_sparql} .""")

        if property_statistics.grouping_type == GroupingType.YEAR:
            query += f("""
  ?entity wdt:{property_statistics.grouping_property} ?date .
  BIND(YEAR(?date) as ?grouping).""")

        else:
            query += f("""
  ?entity wdt:{property_statistics.grouping_property} ?grouping .""")

        query += f("""
  FILTER(EXISTS {{{self.get_filter_for_info()}
  }})
}}
GROUP BY ?grouping
HAVING (?count >= {property_statistics.property_threshold})
ORDER BY DESC(?count)
LIMIT 1000
""")
        return query
示例#3
0
def res2next(depth, num_classes, width_per_group=4, scale=4, pretrained=False, progress=True, **kwargs):
    """Instantiate a Res2NeXt model
    Args:
        depth (int): depth of the model
        num_classes (int): number of output classes
        scale (int): number of branches for cascade convolutions
        pretrained (bool): whether the model should load pretrained weights (ImageNet training)
        progress (bool): whether a progress bar should be displayed while downloading pretrained weights
        **kwargs: optional arguments of torchvision.models.resnet.ResNet
    Returns:
        model (torch.nn.Module): loaded Pytorch model
    """

    if RESNET_LAYERS.get(depth) is None:
        raise NotImplementedError(f("This specific architecture is not defined for that depth: {depth}"))

    block = Res2Block if depth >= 50 else BasicBlock

    kwargs.update(RES2NEXT_PARAMS.get(depth))
    model = Res2Net(block, RESNET_LAYERS.get(depth), num_classes=num_classes, scale=scale, **kwargs)

    if pretrained:
        state_dict = load_state_dict_from_url(URLS.get(f("res2next{depth}_{width_per_group}w_{scale}s_{kwargs['groups']}c")), progress=progress)
        # Remove FC params from dict
        del state_dict['fc.weight']
        del state_dict['fc.bias']
        missing, unexpected = model.load_state_dict(state_dict, strict=False)

        if any(unexpected) or any(not elt.startswith('fc.') for elt in missing):
            raise KeyError(f("Weight loading failed.\nMissing parameters: {missing}\nUnexpected parameters: {unexpected}"))

    return model
示例#4
0
    def registerModule(self, module):
        # This function is used during module instantiation to either reference a
        # previously loaded module, or to instantiate a module for the first time
        if (not module['ref'] and not module['modulename']):
            debugLog(
                2,
                f("registerModule called for module {colored(module['name'], 'red')} without an existing reference or a module to instantiate."
                  ))
        elif (module['ref']):
            # If the reference is passed, it means this module has already been
            # instantiated and we should just refer to the existing instance

            # Check this module has not already been instantiated
            if (not self.modules.get(module['name'], None)):
                self.modules[module['name']] = {
                    "ref": module['ref'],
                    "type": module['type']
                }
                self.debugLog(
                    7, "TWCMaster ",
                    f("Registered module {colored(module['name'], 'red')}"))
            else:
                self.debugLog(
                    7, "TWCMaster ",
                    f("Avoided re-registration of module {colored(module['name'], 'red')}, which has already been loaded"
                      ))
示例#5
0
    def test(self, source, dag, name, batch_size=1, max_num=None):
        self.shared.eval()
        self.controller.eval()

        data = source[:max_num * self.max_length]

        total_loss = 0
        hidden = self.shared.init_hidden(batch_size)

        pbar = trange(0, data.size(0) - 1, self.max_length, desc="test")
        for count, idx in enumerate(pbar):
            inputs, targets = self.get_batch(data, idx, evaluation=True)
            output, hidden = self.shared(inputs,
                                         dag,
                                         hidden=hidden,
                                         is_train=False)
            output_flat = output.view(-1, self.dataset.num_tokens)
            total_loss += len(inputs) * self.ce(output_flat, targets).data
            hidden = detach(hidden)
            ppl = math.exp(total_loss[0] / (count + 1) / self.max_length)
            pbar.set_description(f("test| ppl: {ppl:8.2f}"))

        test_loss = total_loss[0] / len(data)
        ppl = math.exp(test_loss)

        self.tb.scalar_summary(f("test/{name}_loss"), test_loss, self.epoch)
        self.tb.scalar_summary(f("test/{name}_ppl"), ppl, self.epoch)

        return test_loss, ppl
示例#6
0
def load_model(path, model, optim=None, new_lr_bool=False, new_lr=6e-5):

    # remap everthing onto CPU
    state = torch.load(str(path),
                       map_location=lambda storage, location: storage)

    model.load_state_dict(state['model'])
    if optim:
        log('loading optim too')
        if (new_lr_bool):
            state['optim']['param_groups'][0]['lr'] = new_lr
            print('Modified learning rate = ',
                  state['optim']['param_groups'][0]['lr'])
            print(
                f('=============== learning rate updated to {new_lr} ========================'
                  ))
            log(
                f('=============== learning rate updated to {new_lr} ========================'
                  ))
        optim.load_state_dict(state['optim'])

    else:
        log('not loading optim')

    model.cuda()

    detail = state['detail']
    log('loaded model from %s' % path)

    return detail
示例#7
0
    def make_footer(self):
        total_items = self.get_totals()
        text = u'|- class="sortbottom"\n|'
        if self.higher_grouping:
            text += u"|\n|"

        text += f(
            '\'\'\'Totals\'\'\' <small>(all items)</small>:\n| {total_items}\n'
        )
        for column_entry in self.columns:

            if isinstance(column_entry, PropertyConfig):
                property_name = column_entry.property
                if column_entry.qualifier:
                    totalprop = self.get_totals_for_qualifier(
                        property=property_name,
                        qualifier=column_entry.qualifier)
                else:
                    totalprop = self.get_totals_for_property(
                        property=property_name)
            elif isinstance(column_entry, TextConfig):
                totalprop = self._get_count_from_sparql(
                    column_entry.get_totals_query(self))
            percentage = self._get_percentage(totalprop, total_items)
            text += f(
                '| {{{{{self.cell_template}|{percentage}|{totalprop}|column={column_entry.get_title()}}}}}\n'
            )
        text += u'|}\n'
        return text
示例#8
0
    def make_stats_for_no_group(self):
        """
        Query the data for no_group, return the wikitext
        """
        text = u'|-\n'

        if self.higher_grouping:
            text += u'|\n'

        total_no_count = self.get_totals_no_grouping()
        text += u'| No grouping \n'
        text += f('| {total_no_count} \n')
        for column_entry in self.columns:

            if isinstance(column_entry, PropertyConfig):
                property_name = column_entry.property

                if column_entry.qualifier:
                    value = column_entry.value or '[]'
                    column_count = self.get_qualifier_info_no_grouping(
                        property_name, column_entry.qualifier, value)
                else:
                    column_count = self.get_property_info_no_grouping(
                        property_name)
            elif isinstance(column_entry, TextConfig):
                column_count = self._get_count_from_sparql(
                    column_entry.get_info_no_grouping_query(self))

            percentage = self._get_percentage(column_count, total_no_count)
            text += f(
                '| {{{{{self.cell_template}|{percentage}|{column_count}|column={column_entry.get_title()}|grouping={self.GROUP_MAPPING.NO_GROUPING.value}}}}}\n'
            )  # noqa
        return text
示例#9
0
    def get_query_for_items_for_property_positive(self, column, grouping):
        query = f("""
SELECT DISTINCT ?entity ?entityLabel ?value ?valueLabel WHERE {{
  ?entity {self.selector_sparql} .""")

        if grouping == self.GROUP_MAPPING.TOTALS:
            pass

        elif grouping == self.GROUP_MAPPING.NO_GROUPING:
            query += f("""
  MINUS {{
    ?entity wdt:{self.grouping_property} [] .
  }}""")
        else:
            query += f("""
  ?entity wdt:{self.grouping_property} wd:{grouping} .""")

        if column.startswith('P'):
            query += f("""
  ?entity p:{column} ?prop . OPTIONAL {{ ?prop ps:{column} ?value }}
  SERVICE wikibase:label {{ bd:serviceParam wikibase:language "[AUTO_LANGUAGE],en". }}
}}
""")
        elif column.startswith('L') or column.startswith('D'):

            query += f("""
  FILTER(EXISTS {{
    ?entity {self.TEXT_SELECTOR_MAPPING[column[:1]]} ?lang_label.
    FILTER((LANG(?lang_label)) = "{column[1:]}").
  }})
  SERVICE wikibase:label {{ bd:serviceParam wikibase:language "{column[1:]}". }}
}}
""")

        return query
示例#10
0
 def get_filter_for_info(self):
     if self.qualifier:
         property_value = f'wd:{self.value}' if self.value else '[]'
         return f("""
 ?entity p:{self.property} [ ps:{self.property} {property_value} ; pq:{self.qualifier} [] ]""")
     else:
         return f("""
 ?entity p:{self.property}[]""")
示例#11
0
 def __str__(self):
     #return ("{\"mac_address\":\"{0}\", \"max_time_out\":\"{1}\", \"last_time_seen\":\"{2}\", \"rssid\":\"{3}}").format(self.mac_address, self.max_time_out, self.last_time_seen, self.rssid)
     print(
         f('mac_address:{self.mac_address}, max_time_out:{self.max_time_out_in_seconds}, rssid:{self.rssid}'
           ))
     return (f(
         'mac_address:{self.mac_address}, max_time_out:{self.max_time_out_in_seconds}, rssid:{self.rssid} dd'
     ))
示例#12
0
    def test_redirects_to_list_view(self):
        other_list = List.objects.create()
        correct_list = List.objects.create()

        response = self.client.post(
            f('/lists/{correct_list.id}/add_item'),
            data={'item_text': 'A new item for an existing list'})

        self.assertRedirects(response, f('/lists/{correct_list.id}/'))
示例#13
0
 def gerar_base_imagens(self):
     linha_texto_gerado = self._gerar_linhas_texto()
     letras = []
     for index, letra in enumerate(linha_texto_gerado):
         nome_fonte = self._retornar_fonte_aleatoria()
         fonte = ImageFont.truetype(f('{caminho_fontes}{nome_fonte}'),
                                    self.tamanho_fonte)
         self._criar_imagem(letra, fonte, f('{index}.jpg'))
         letras.append(f('{index}.jpg,{letra}'))
     self._criar_csv(letras)
示例#14
0
    def make_column_header(prop_entry):
        if prop_entry.qualifier:
            property_link = prop_entry.qualifier
        else:
            property_link = prop_entry.property

        if prop_entry.title:
            label = f('[[Property:{property_link}|{prop_entry.title}]]')
        else:
            label = f('{{{{Property|{property_link}}}}}')
        return f('! data-sort-type="number"|{label}\n')
示例#15
0
def get_optim(cfg, parameters):
    if (cfg.optim.name == 'Adam'):
        optim = getattr(torch.optim, cfg.optim.name)(parameters,
                                                     **cfg.optim.params)
        log(f('optim: {cfg.optim.name}'))
        return optim

    elif (cfg.optim.name == 'Ranger'):
        optim = Ranger(parameters, **cfg.optim.params)
        log(f('optim: {cfg.optim.name}'))
        return optim
    else:
        print("SPECIFY CORRECT OPTIMIZER")
示例#16
0
    def debugLog(self, logdata):
        # debugLog is something of a catch-all if we don't have a specific
        # logging function for the given data. It allows a log entry to be
        # passed to us for storage.

        if logdata["debugLevel"] >= logdata["minLevel"]:
            print(
                colored(logdata["logTime"] + " ", "yellow")
                + colored(f("{logdata['function']}"), "green")
                + colored(f(" {logdata['minLevel']} "), "cyan")
                + f("{logdata['message']}")
            )

        return
示例#17
0
    def get_grouping_information(self):
        """
        Get the information for a single grouping.

        :return: Tuple of two (ordered) dictionaries.
        """
        if self.higher_grouping:
            query = f("""
SELECT ?grouping (SAMPLE(?_higher_grouping) as ?higher_grouping) (COUNT(DISTINCT ?entity) as ?count) WHERE {{
  ?entity {self.selector_sparql} .
  ?entity wdt:{self.grouping_property} ?grouping .
  OPTIONAL {{ ?grouping {self.higher_grouping} ?_higher_grouping }}.
}} GROUP BY ?grouping ?higher_grouping
HAVING (?count > {self.grouping_threshold})
ORDER BY DESC(?count)
LIMIT 1000
""")
        else:
            query = f("""
SELECT ?grouping (COUNT(DISTINCT ?entity) as ?count) WHERE {{
  ?entity {self.selector_sparql} .
  ?entity wdt:{self.grouping_property} ?grouping .
}} GROUP BY ?grouping
HAVING (?count > {self.grouping_threshold})
ORDER BY DESC(?count)
LIMIT 1000
""")
        grouping_counts = collections.OrderedDict()

        grouping_groupings = collections.OrderedDict()

        sq = pywikibot.data.sparql.SparqlQuery()
        queryresult = sq.select(query)

        if not queryresult:
            raise QueryException("No result when querying groupings.")

        for resultitem in queryresult:
            qid = resultitem.get('grouping').replace(
                u'http://www.wikidata.org/entity/', u'')
            grouping_counts[qid] = int(resultitem.get('count'))

            if self.higher_grouping:
                value = resultitem.get('higher_grouping')
                if value:
                    value = value.replace(u'http://www.wikidata.org/entity/',
                                          u'')
                grouping_groupings[qid] = value

        return (grouping_counts, grouping_groupings)
示例#18
0
def home_view(request):
    next = request.GET.get('next')
    form = HomeForm(request.POST or None)
    if form.is_valid():
        gender = form.cleaned_data.get('gender')
        age = form.cleaned_data.get('age')
        occupation = form.cleaned_data.get('occupation')
        city_category = form.cleaned_data.get('city_category')
        stay_years = form.cleaned_data.get('stay_years')
        #marital = form.cleaned_data.get('marital')
        product_id = form.cleaned_data.get('product_id')
        purchase = form.cleaned_data.get('purchase')
        messages.success(request, f('Valid inputs, good job!'))
        h = Person(gender=gender,
                   age=age,
                   occupation=occupation,
                   city_category=city_category,
                   stay_years=stay_years,
                   product_id=product_id,
                   purchase=purchase)
        a = []
        a.append(h.gender)
        a.append(h.age)
        a.append(h.occupation)
        a.append(h.city_category)
        a.append(h.stay_years)
        #a.append(h.marital)
        a.append(h.product_id)
        a.append(h.purchase)

        e = []
        e.append(a)
        print(e)

        d = Data.data_min(e)
        prediction = int(d[0])
        print(type(d))
        h.save()
        if (prediction == 1):
            messages.info(request, f('The Prediction is MARRIED'))
        elif (prediction == 0):
            messages.info(request, f('The Prediction is NOT MARRIED'))
        if next:
            return redirect(next)
        return redirect('/')
    context = {
        'form': form,
    }
    return render(request, 'home_form.html', context)
示例#19
0
    def save_model(self):
        t.save(self.shared.state_dict(), self.shared_path)
        logger.info(f("[*] SAVED: {self.shared_path}"))

        t.save(self.controller.state_dict(), self.controller_path)
        logger.info(f("[*] SAVED: {self.controller_path}"))

        epochs, shared_steps, controller_steps = self.get_saved_models_info()

        for epoch in epochs[:-self.args.max_save_num]:
            paths = glob(
                os.path.join(self.args.model_dir, f('*_epoch{epoch}_*.pth')))

            for path in paths:
                remove_file(path)
示例#20
0
    def load_bowl(self, base_path):
        """Generate the requested number of synthetic images.
        count: number of images to generate.
        height, width: the size of the generated images.
        """
        self.add_class("bowl", 1, "nuclei")

        masks = dict()
        id_extractor = re.compile(
            f("{base_path}\{os.sep}(?P<image_id>.*)\{os.sep}masks\{os.sep}(?P<mask_id>.*)\.png"
              ))

        for mask_path in glob(os.path.join(base_path, "**", "masks", "*.png")):
            matches = id_extractor.match(mask_path)

            image_id = matches.group("image_id")
            image_path = os.path.join(base_path, image_id, "images",
                                      image_id + ".png")

            if image_path in masks:
                masks[image_path].append(mask_path)
            else:
                masks[image_path] = [mask_path]

        for i, (image_path, mask_paths) in enumerate(masks.items()):
            self.add_image("bowl",
                           image_id=i,
                           path=image_path,
                           mask_paths=mask_paths)
示例#21
0
def main(args):
    prepare_dirs(args)

    torch.manual_seed(args.random_seed)

    if args.num_gpu > 0:
        torch.cuda.manual_seed(args.random_seed)

    if args.network_type == 'rnn':
        dataset = data.text.Corpus(os.path.join(args.data_dir, args.dataset))
    elif args.dataset == 'cifar':
        dataset = data.image.Image(os.path.join(args.data_dir, args.dataset))
    else:
        raise NotImplemented(f("{args.dataset} is not supported"))

    trainer = Trainer(args, dataset)

    if args.mode == 'train':
        save_args(args)
        trainer.train()
    elif args.mode == 'derive':
        assert args.load_path != "", "`--load_path` should be given in `derive` mode"
        trainer.derive()
    else:
        if not args.load_path:
            raise Exception(
                "[!] You should specify `load_path` to load a pretrained model"
            )
        trainer.test()
示例#22
0
    def __init__(self, args):
        if args.datset == 'cifar10':
            Dataset = datasets.CIFAR10

            mean = [0.49139968, 0.48215827, 0.44653124]
            std = [0.24703233, 0.24348505, 0.26158768]

            normalize = transforms.Normalize(mean, std)

            transform = transforms.Compose([
                transforms.RandomCrop(32, padding=4),
                transforms.RandomHorizontalFlip(),
                transforms.ToTensor(),
                normalize,
            ])
        elif args.datset == 'MNIST':
            Dataset = datasets.MNIST
        else:
            raise NotImplemented(f("Unknown dataset: {args.dataset}"))

        self.train = t.utils.data.DataLoader(
            Dataset(root='./data', train=True, transform=transform, download=True),
            batch_size=args.batch_size, shuffle=True,
            num_workers=args.num_workers, pin_memory=True)

        self.valid = t.utils.data.DataLoader(
            Dataset(root='./data', train=False, transform=transforms.Compose([
                transforms.ToTensor(),
                normalize,
            ])),
            batch_size=args.batch_size, shuffle=False,
            num_workers=args.num_workers, pin_memory=True)

        self.test = self.valid
示例#23
0
def add_node(graph, node_id, label, shape='box', style='filled'):
    if label.startswith('x'):
        color = 'white'
    elif label.startswith('h'):
        color = 'skyblue'
    elif label == 'tanh':
        color = 'yellow'
    elif label == 'ReLU':
        color = 'pink'
    elif label == 'identity':
        color = 'orange'
    elif label == 'sigmoid':
        color = 'greenyellow'
    elif label == 'avg':
        color = 'seagreen3'
    else:
        color = 'white'

    if not any(label.startswith(word) for word in ['x', 'avg', 'h']):
        label = f("{label}\n({node_id})")

    graph.add_node(
        node_id,
        label=label,
        color='black',
        fillcolor=color,
        shape=shape,
        style=style,
    )
示例#24
0
    def get_reward(self, dag, entropies, valid_idx=None):
        if type(entropies) is not np.ndarray:
            entropies = entropies.data.cpu().numpy()

        if valid_idx:
            valid_idx = 0

        inputs, targets = self.get_batch(self.valid_data, valid_idx,
                                         self.max_length)
        valid_loss = self.get_loss(inputs, targets, None, dag)

        valid_ppl = math.exp(valid_loss.data[0])

        # TODO: we don't know reward_c
        if self.args.ppl_square:
            # TODO: but we do know reward_c=80 in the previous paper
            R = self.args.reward_c / valid_ppl**2
        else:
            R = self.args.reward_c / valid_ppl

        if self.args.entropy_mode == 'reward':
            rewards = R + self.args.entropy_coeff * entropies
        elif self.args.entropy_mode == 'regularizer':
            rewards = R * np.ones_like(entropies)
        else:
            raise NotImplemented(
                f("Unkown entropy mode: {self.args.entropy_mode}"))
        return rewards
示例#25
0
    def get_num_cell_parameters(self, dag):
        num = 0

        num += size(self.w_xc)
        num += size(self.w_xh)

        q = deque()
        q.append(0)

        while True:
            if len(q) == 0:
                break

            node_id = q.popleft()
            nodes = dag[node_id]

            for next_node in nodes:
                next_id = next_node.id
                if next_id == self.args.num_blocks:
                    assert len(
                        nodes
                    ) == 1, "parent of leaf node should have only one child"
                    continue

                w_h = self.w_h[node_id][next_id]
                w_c = self.w_c[node_id][next_id]

                num += size(w_h)
                num += size(w_c)

                q.append(next_id)

        logger.debug(
            f("# of cell parameters: {format(self.num_parameters, ',d')}"))
        return num
示例#26
0
 def replace_in_page(self, output, page_text):
     regex_text = f(
         '({{{{{self.template_name}.*?}}}}).*?({{{{{self.end_template_name}}}}})'
     )
     regex = re.compile(regex_text, re.MULTILINE | re.DOTALL)
     new_text = re.sub(regex, r'\1\n%s\n\2' % output, page_text, count=1)
     return new_text
示例#27
0
    def get_qualifier_info(self, property, qualifier, value="[]"):
        """
        Get the usage counts for a qulifier for the groupings

        :param property: Wikidata Pid of the property
        :param qualifier: Wikidata Pid of the qualifier
        :return: (Ordered) dictionary with the counts per grouping
        """
        query = f("""
SELECT ?grouping (COUNT(DISTINCT ?entity) as ?count) WHERE {{
  ?entity {self.selector_sparql} .
  ?entity wdt:{self.grouping_property} ?grouping .
  FILTER EXISTS {{ ?entity p:{property} [ ps:{property} {value} ; pq:{qualifier} [] ] }} .
}}
GROUP BY ?grouping
HAVING (?count > {self.property_threshold})
ORDER BY DESC(?count)
LIMIT 1000
""")
        result = collections.OrderedDict()
        sq = pywikibot.data.sparql.SparqlQuery()
        queryresult = sq.select(query)
        if not queryresult:
            return None
        for resultitem in queryresult:
            qid = resultitem.get('grouping').replace(
                u'http://www.wikidata.org/entity/', u'')
            result[qid] = int(resultitem.get('count'))
        return result
示例#28
0
    def get_totals(self):
        query = f("""
SELECT (COUNT(?item) as ?count) WHERE {{
  ?item {self.selector_sparql}
}}
""")
        return self._get_count_from_sparql(query)
示例#29
0
    def make_stats_for_one_grouping(self, grouping, item_count,
                                    higher_grouping):
        """
        Query the data for one group, return the wikitext.
        """
        text = u'|-\n'

        if self.higher_grouping:
            if higher_grouping:
                text += self.format_higher_grouping_text(higher_grouping)
            else:
                text += u'|\n'

        if grouping in self.GROUP_MAPPING.__members__:
            text += u'| %s\n' % (
                self.GROUP_MAPPING.__members__.get(grouping).value, )
        elif self.grouping_type == GroupingType.YEAR:
            text += u'| %s\n' % (grouping, )
        else:
            text += u'| {{Q|%s}}\n' % (grouping, )

        if self.grouping_link:
            try:
                group_item = pywikibot.ItemPage(self.repo, grouping)
                group_item.get()
                label = group_item.labels["en"]
            except (pywikibot.exceptions.InvalidTitle, KeyError):
                logging.info(f("Could not retrieve label for {grouping}"))
                label = grouping
            text += f('| [[{self.grouping_link}/{label}|{item_count}]] \n')
        else:
            text += f('| {item_count} \n')

        for column_entry in self.columns:
            column_entry_key = column_entry.get_key()
            try:
                column_count = self.column_data.get(column_entry_key).get(
                    grouping)
            except AttributeError:
                column_count = 0
            if not column_count:
                column_count = 0
            percentage = self._get_percentage(column_count, item_count)
            text += f(
                '| {{{{{self.cell_template}|{percentage}|{column_count}|column={column_entry.get_title()}|grouping={grouping}}}}}\n'
            )  # noqa
        return text
示例#30
0
    def get_totals_no_grouping(self):
        query = f("""
SELECT (COUNT(?item) as ?count) WHERE {{
  ?item {self.selector_sparql}
  MINUS {{ ?item wdt:{self.grouping_property} _:b28. }}
}}
""")
        return self._get_count_from_sparql(query)