示例#1
0
文件: base.py 项目: icmeyer/fudge
    def removeExtraZeros(self):
        """
        Remove all extra zeros from the underlying matrix
        :return:
        """
        matrix = self.matrix.array.constructArray()
        rowStart, colStart = 0,0
        rowEnd, colEnd = matrix.shape
        while numpy.all(matrix[rowStart,:]==0):
            rowStart += 1
        while numpy.all(matrix[:,colStart]==0):
            colStart += 1
        while numpy.all(matrix[rowEnd-1,:]==0):
            rowEnd -= 1
        while numpy.all(matrix[:,colEnd-1]==0):
            colEnd -= 1

        matrix = matrix[rowStart:rowEnd, colStart:colEnd]
        if self.matrix.axes[-2].style=='link':
            assert (rowStart,rowEnd) == (colStart,colEnd)
            self.matrix.axes[-1].__values = self.matrix.axes[-1].values[rowStart:rowEnd]
        else:
            self.matrix.axes[-1].__values = self.matrix.axes[-1].values[rowStart:rowEnd]
            self.matrix.axes[-2].__values = self.matrix.axes[-2].values[colStart:colEnd]
        self.matrix.array = arrayModule.full(shape=matrix.shape,data=matrix[numpy.tri(matrix.shape[0])==1.0].tolist(),symmetry=arrayModule.symmetryLowerToken)
示例#2
0
    def removeExtraZeros(self, verbose=False):
        """
        Remove all extra zeros from the underlying matrix
        :return:
        """
        theMatrix = self.matrix.array.constructArray()
        rowStart, colStart = 0,0
        rowEnd, colEnd = theMatrix.shape

        if verbose: print 'before',theMatrix

        # Figure out which end rows/columns are full of zeros.  We can remove those
        while numpy.all(theMatrix[rowStart,:]==0): rowStart += 1
        while numpy.all(theMatrix[:,colStart]==0): colStart += 1
        while numpy.all(theMatrix[rowEnd-1,:]==0): rowEnd -= 1
        while numpy.all(theMatrix[:,colEnd-1]==0): colEnd -= 1

        theMatrix = theMatrix[rowStart:rowEnd, colStart:colEnd]

        if verbose: print 'after',theMatrix

        if verbose: print 'before',self.matrix.axes[-1].toXML(), self.matrix.axes[-2].toXML()

        if self.matrix.axes[-2].style=='link':
            assert (rowStart,rowEnd) == (colStart,colEnd)
            self.matrix.axes[-1].values.values = self.matrix.axes[-1].values[rowStart:rowEnd+1]
        else:
            self.matrix.axes[-1].values.values = self.matrix.axes[-1].values[rowStart:rowEnd+1]
            self.matrix.axes[-2].values.values = self.matrix.axes[-2].values[colStart:colEnd+1]

        if verbose: print 'after',self.matrix.axes[-1].toXML(), self.matrix.axes[-2].toXML()

        self.matrix.array = arrayModule.full(shape=theMatrix.shape,data=theMatrix[numpy.tri(theMatrix.shape[0])==1.0].tolist(),symmetry=arrayModule.symmetryLowerToken)
示例#3
0
    def getCorrelationMatrix( self ):
        """
        Returns the correlation matrix generated from self's covariance matrix.  This is
        essentially a copy of self, but renormalized by the uncertainty:

            correlation[i,j] = covariance[i,j]/sqrt(covariance[i,i])/sqrt(covariance[j,j])

        We reuse the covariance matrix class so that we can do plotting, etc.  If you have
        a correlation matrix, you can safely recover it provided you have the uncertainty
        vector.

        Currently only works for a square covariance matrix and not a off-diagonal part of
        another covariance.
        """
        # Check if is full, square covariance matrix
        if not self.isSymmetric():
            raise TypeError( "Can only extract correlation matrices from symmetric covariance matrices" )
                
        # Rescale result matrix
        theCorrelationMatrix = self.matrix.array.constructArray()
        theUncertainty = copy.copy( numpy.diag( theCorrelationMatrix ) )
        theUncertainty[ theUncertainty < 0.0 ] = 0.0
        theUncertainty = numpy.sqrt( theUncertainty )
        for i1 in range( theCorrelationMatrix.shape[0] ):
            for i2 in range( theCorrelationMatrix.shape[1] ):
                theCorrelationMatrix[i1,i2] /= ( theUncertainty[i1] * theUncertainty[i2] )

        # Return the result
        tridata = theCorrelationMatrix[numpy.tri(theCorrelationMatrix.shape[0])==1.0].tolist()
        correlation = griddedModule.gridded2d(
                axes=self.matrix.axes.copy(),#FIXME: unresolvedLinks still unresolved!
                array=arrayModule.full(shape=theCorrelationMatrix.shape, data=tridata, symmetry=arrayModule.symmetryLowerToken) )
        correlation.axes[0].unit = ''
        return correlation
示例#4
0
文件: mixed.py 项目: alhajri/FUDGE
    def toCovarianceMatrix(self, label="composed"):
        """
        Sum all parts together to build a single matrix.
        """
        if len(self.components) == 1:
            return self.components[0].toCovarianceMatrix()
        import fudge.gnd.covariances.base as base
        import numpy
        import xData.values as valuesModule
        import xData.array as arrayModule

        # Set up common data using first component
        firstCovMtx = self.components[0].toCovarianceMatrix()
        if not isinstance(firstCovMtx, base.covarianceMatrix):
            raise TypeError(
                "Shoudd have gotten base.covarianceMatrix, instead got %s" %
                str(firstCovMtx.__class__))
        commonRowAxis = firstCovMtx.matrix.axes[2].copy(
            [])  #FIXME: unresolvedLinks are still unresolved!
        if firstCovMtx.matrix.axes[1].style == 'link':
            commonColAxis = firstCovMtx.matrix.axes[2].copy(
                [])  #FIXME: unresolvedLinks are still unresolved!
        else:
            commonColAxis = firstCovMtx.matrix.axes[1].copy(
                [])  #FIXME: unresolvedLinks are still unresolved!
        commonMatrixAxis = firstCovMtx.matrix.axes[0].copy(
            [])  #FIXME: unresolvedLinks are still unresolved!
        commonType = firstCovMtx.type

        # We need all the covariances to be either absolute or relative
        def make_common_type(cm):
            if commonType == 'relative': return cm.toRelative()
            else: return cm.toAbsolute()

        # We're going to have to merge grids, so we'll need this function to do the dirty work
        def add_values(v1, v2):
            v = set()
            v.update(v1.values)
            v.update(v2.values)
            return valuesModule.values(sorted(v))

        # First pass through components is to collect bins to set up the common grid + do assorted checking
        for c in self.components[1:]:
            cc = make_common_type(c.toCovarianceMatrix(
            ))  # a little recursion to take care of nested covariances
            if cc.type != commonType:
                raise ValueError("Incompatible types in %s: %s vs. %s" %
                                 (self.__class__, commonType, cc.type))
            if cc.matrix.axes[0].unit != commonMatrixAxis.unit:
                raise ValueError(
                    "covariance matrix components with different units?!? %s vs. %s"
                    % (cc.matrix.axes[0].unit, commonMatrixAxis.unit))
            if cc.matrix.axes[1].style != 'link':
                cc.matrix.axes[1].convertToUnit(commonColAxis.unit)
            cc.matrix.axes[2].convertToUnit(commonRowAxis.unit)
            commonRowAxis.values.values = add_values(commonRowAxis.values,
                                                     cc.matrix.axes[2].values)
            if cc.matrix.axes[1].style == 'link':
                commonColAxis.values.values = add_values(
                    commonColAxis.values, cc.matrix.axes[2].values)
            else:
                commonColAxis.values.values = add_values(
                    commonColAxis.values, cc.matrix.axes[1].values)

        # Now sum up the components
        commonMatrix = numpy.mat(
            firstCovMtx.group(
                (commonRowAxis.values.values, commonColAxis.values.values),
                (commonRowAxis.unit,
                 commonColAxis.unit)).matrix.array.constructArray())
        for c in self.components[1:]:
            cc = make_common_type(c.toCovarianceMatrix(
            ))  # a little recursion to take care of nested covariances
            commonMatrix += numpy.mat(
                cc.group(
                    (commonRowAxis.values.values, commonColAxis.values.values),
                    (commonRowAxis.unit,
                     commonColAxis.unit)).matrix.array.constructArray())

        # Now create the instance of the resulting covarianceMatrix
        if all([
                component.toCovarianceMatrix().matrix.axes[1].style == 'link'
                for component in self.components
        ]):
            commonColAxis = self.components[0].toCovarianceMatrix(
            ).matrix.axes[1].copy(
                [])  #FIXME: unresolvedLinks are still unresolved!
        newAxes = axesModule.axes(
            labelsUnits={
                0: (commonMatrixAxis.label, commonMatrixAxis.unit),
                1: (commonColAxis.label, commonColAxis.unit),
                2: (commonRowAxis.label, commonRowAxis.unit)
            })
        newAxes[2] = axesModule.grid(commonRowAxis.label,
                                     commonRowAxis.index,
                                     commonRowAxis.unit,
                                     style=axesModule.boundariesGridToken,
                                     values=commonRowAxis.values)
        newAxes[1] = axesModule.grid(commonColAxis.label,
                                     commonColAxis.index,
                                     commonColAxis.unit,
                                     style=axesModule.linkGridToken,
                                     values=linkModule.link(
                                         link=commonRowAxis.values,
                                         relative=True))
        newAxes[0] = axesModule.axis(commonMatrixAxis.label,
                                     commonMatrixAxis.index,
                                     commonMatrixAxis.unit)
        trigdata = commonMatrix[numpy.tri(commonMatrix.shape[0]) ==
                                1.0].tolist()[0]
        gridded = griddedModule.gridded2d(
            axes=newAxes,
            array=arrayModule.full(shape=commonMatrix.shape,
                                   data=trigdata,
                                   symmetry=arrayModule.symmetryLowerToken))
        newCov = base.covarianceMatrix(label=label,
                                       type=commonType,
                                       matrix=gridded)
        newCov.setAncestor(self.ancestor)
        return newCov
示例#5
0
    def group( self, groupBoundaries = ( None, None ), groupUnit = ( None, None ) ):
        '''
        Group the matrix in self

        :param groupBoundaries: a 2 element list containing the group boundaries for the rows 
                                and columns (respectively) of the covariance to be regrouped
                                rows go in the first element, columns in the second
        :param groupUnit: a 2 element list containing the units in which group boundaries are 
                          specified for the rows and columns (respectively) of the covariance 
                          to be regrouped

        :returns: the regrouped matrix (an xData.array.full as the array in a gridded2d.matrix)
            
        .. note::  We still need to do flux weighting
            
            
        .. rubric:: Regrouping Theory
        
        Given a function :math:`f(E)`, we write the grouped data using fudge's ``flat`` interpolation 
        scheme.  We note that we could write this scheme as an expansion over basis functions:
        
        .. math::    
            f(E) = \sum_{i=0}^{N+1} w_i(E) * f_i
        
        where the weight functions :math:`w_i(E)` are
        
        .. math::
            w_i(E) = 1  \;\\text{for}\; E_i <= E <= E_{i+1}; \;\; 0 \;\\textrm{otherwise}
            
        These weights are an orthogonal (bot not orthonormal) basis, with 
        
        .. math::
            (E_{i+1}-E_i) \delta_{ij} = \int dE w_i(E) * w_j(E)
        
        So, to transform from basis :math:`w_i(E)` to :math:`v_i(E)` (which has group boundaries 
        :math:`[ E'_0, ... ]`), do: 
        
        .. math::
            f'_j = \sum_i m_{ji} f_i
            
        where :math:`f'` is the regrouped function coefficients and :math:`m_{ji}` is the matrix
        
        .. math::
            m_{ij} = (E'_{i+1}-E'_i)^{-1} \int dE v_i(E) w_j(E) 

            
        .. rubric:: Applying regrouping theory to covariance matrices   
        
        When we are given a covariance matrix :math:`c_{ij}` in ENDF, it is meant to be interpreted
        as a grouped covariance in both the direction of the matrix rows and the matrix 
        columns.  Therefore, we must regroup in both the row direction and the column 
        direction.  The ENDF format gives both the group boundaries for the rows and columns.
        In other words, ENDF gives us the following rule for evaluating the continuous row-
        column covariance:
        
        .. math::
            c( E1, E2 ) = \sum_{ij} w_i(E1) w_j(E2) c_{ij}
            
        Computing :math:`m_{ij}` as before, 
            
        .. math::
            cc_{ij} = \sum_{i',j'} m_{ii'} c_{i'j'} m_{j'j}
            
        It is straightforward to generalize to the case where the row and column bases are 
        different.
        
        In the routine below, we abuse :py:class:`xData.XYs1d` to specify the functions 
        :math:`w_i(E)` and use the :py:func:`XYs1d.groupOneFunction()` method to perform the integrals to get
        the regrouping matrix.  We do this separately for the rows and the columns.
        The matrix multiplication that converts a covariance from one pair of bases (group 
        structures) to another is accomplished using numpy.

        
        .. rubric:: An explanation of fudge's 'flat' interpolation
        
        Suppose we have a function :math:`f(E)` specified using fudge's `'flat'` interpolation.  
        Then we have :math:`N` entries :math:`[f_0, f_1, ..., f_{N-1}]` and a set of group 
        boundaries :math:`[E_0, E_1, ..., E_N]` and the following rule for interpolation:
        
            * Below :math:`E_0`, :math:`f(E)` evaluates to :math:`0.0`
            * From :math:`E_0 \\rightarrow E_1`, :math:`f(E)` evaluates to :math:`f_0`
            * From :math:`E_1 \\rightarrow E_2`, :math:`f(E)` evaluates to :math:`f_1`
            * ...
            * From :math:`E_{i} \\rightarrow E_{i+1}`, :math:`f(E)` evaluates to :math:`f_i`
            * ...
            * From :math:`E_{N-1} \\rightarrow E_N`, :math:`f(E)` evaluates to :math:`f_{N-1}`
            * Above :math:`E_N`, :math:`f(E)` evaluates to :math:`0.0`
        '''
        # determine where to get the settings for the potentially mirrored second axis
        if self.matrix.axes[1].style == 'link': axis1index = 2
        else:                                   axis1index = 1
        
        # setup the old axes in a form we can (ab)use in the XYs1d class
        axes2_ = axesModule.axes( labelsUnits={1:( self.matrix.axes[2].label, self.matrix.axes[2].unit ),0:( 'dummy', '' )} )
        axes1_ = axesModule.axes( labelsUnits={1:( self.matrix.axes[axis1index].label, self.matrix.axes[axis1index].unit ),0:( 'dummy', '' )} )
        
        # define basis functions for the rows and columns
        basis2 = XYsModule.XYs1d( axes=axes2_, data=[ ( x, 0.0 ) for x in self.matrix.axes[2].values ], interpolation='flat' )
        basis1 = XYsModule.XYs1d( axes=axes1_, data=[ ( x, 0.0 ) for x in self.matrix.axes[axis1index].values ], interpolation='flat' )
        basis2 = basis2.convertAxisToUnit( 1, groupUnit[0] )
        basis1 = basis1.convertAxisToUnit( 1, groupUnit[1] )

        # build the regrouping matrices for the two bases
        w0 = []
        for idx in range( self.matrix.array.shape[0] ):
            basis2[idx] = ( basis2[idx][0], 1.0 )
            w0.append( basis2.groupOneFunction( groupBoundaries[0], norm = 'dx' ) )
            basis2[idx] = ( basis2[idx][0], 0.0 )
        w0 = numpy.mat( w0 )
        w1 = []
        for j in range( self.matrix.array.shape[1] ):
            basis1[j] = ( basis1[j][0], 1.0 )
            w1.append( basis1.groupOneFunction( groupBoundaries[1], norm = 'dx' ) )
            basis1[j] = ( basis1[j][0], 0.0 )
        w1 = numpy.mat( w1 )
                
        # set up the regrouped covariance matrix
        grouped = copy.copy( self )
        grouped.matrix.axes[2].data = groupBoundaries[0]
        grouped.matrix.axes[1].data = groupBoundaries[1]
        grouped.matrix.axes[2].unit = groupUnit[0]
        grouped.matrix.axes[1].unit = groupUnit[1]
        odata = numpy.mat( self.matrix.array.constructArray() )
        gdata = w0.T * odata * w1
        trigdata = gdata[numpy.tri(gdata.shape[0])==1.0].tolist()[0]
        grouped.matrix.array = arrayModule.full(shape=gdata.shape,data=trigdata,symmetry=arrayModule.symmetryLowerToken)
        return grouped
示例#6
0
文件: mixed.py 项目: icmeyer/fudge
    def toCovarianceMatrix(self):
        """
        Sum all parts together to build a single matrix.
        FIXME: currently breaks if the 'mixed' section contains a mixture of absolute/relative/correlation matrices.
        """
        if len(self.components) == 1:
            return self.components[0].toCovarianceMatrix()
        import fudge.gnd.covariances.base as base
        import numpy
        import xData.values as valuesModule
        import xData.array as arrayModule

        # set up common data using first component
        firstCovMtx = self.components[0].toCovarianceMatrix()
        commonRowAxis = copy.copy(firstCovMtx.matrix.axes[2])
        if firstCovMtx.matrix.axes[1].style == 'link':
            commonColAxis = copy.copy(firstCovMtx.matrix.axes[2])
        else:
            commonColAxis = copy.copy(firstCovMtx.matrix.axes[1])
        commonMatrixAxis = copy.copy(firstCovMtx.matrix.axes[0])
        commonType = firstCovMtx.type

        # We're going to have to merge grids, so we'll need this function to do the dirty work
        def add_values(v1, v2):
            v = set()
            v.update(v1.values)
            v.update(v2.values)
            return valuesModule.values(sorted(v))

        # first pass through components is to collect bins to set up the common grid + do assorted checking
        for c in self.components[1:]:
            cc = c.toCovarianceMatrix(
            )  # a little recursion to take care of nested covariances
            if cc.type != commonType:
                raise ValueError("Incompatible types in %s: %s vs. %s" %
                                 (self.__class__, commonType, cc.type))
            if cc.matrix.axes[0].unit != commonMatrixAxis.unit:
                raise ValueError(
                    "covariance matrix components with different units?!? %s vs. %s"
                    % (cc.matrix.axes[0].unit, commonMatrixAxis.unit))
            if cc.matrix.axes[1].style != 'link':
                cc.matrix.axes[1].convertToUnit(commonColAxis.unit)
            cc.matrix.axes[2].convertToUnit(commonRowAxis.unit)
            commonRowAxis.__values = add_values(commonRowAxis.values,
                                                cc.matrix.axes[2].values)
            if cc.matrix.axes[1].style == 'link':
                commonColAxis.__values = add_values(commonColAxis.values,
                                                    cc.matrix.axes[2].values)
            else:
                commonColAxis.__values = add_values(commonColAxis.values,
                                                    cc.matrix.axes[1].values)

        # now sum up the components
        commonMatrix = numpy.mat(
            firstCovMtx.group(
                (commonRowAxis.values, commonColAxis.values),
                (commonRowAxis.unit,
                 commonColAxis.unit)).matrix.array.constructArray())
        for c in self.components[1:]:
            cc = c.toCovarianceMatrix(
            )  # a little recursion to take care of nested covariances
            commonMatrix += numpy.mat(
                cc.group((commonRowAxis.values, commonColAxis.values),
                         (commonRowAxis.unit,
                          commonColAxis.unit)).matrix.array.constructArray())

        # now create the instance of the resulting covarianceMatrix
        if all([
                component.matrix.axes[1].style == 'link'
                for component in self.components
        ]):
            commonColAxis = self.components[0].matrix.axes[1].copy()
        newAxes = axesModule.axes(
            labelsUnits={
                0: (commonMatrixAxis.label, commonMatrixAxis.unit),
                1: (commonColAxis.label, commonColAxis.unit),
                2: (commonRowAxis.label, commonRowAxis.unit)
            })
        newAxes[0] = commonMatrixAxis
        newAxes[1] = commonColAxis
        newAxes[2] = commonRowAxis
        trigdata = commonMatrix[numpy.tri(commonMatrix.shape[0]) ==
                                1.0].tolist()[0]
        gridded = griddedModule.gridded(
            axes=newAxes,
            array=arrayModule.full(shape=commonMatrix.shape,
                                   data=trigdata,
                                   symmetry=arrayModule.symmetryLowerToken))

        return base.covarianceMatrix(type=commonType, matrix=gridded)
示例#7
0
def readMF7(mt, mf7):

    ZA, AWR, LTHR, LAT, LASYM, dum = endfFileToGNDMisc.sixFunkyFloatStringsToIntsAndFloats(
        mf7[0], range(2, 6))

    if LTHR == 1:  # coherent elastic scattering

        line, temps, energies, dummy, data, e_interp, t_interp = readSTable(
            1, mf7)
        temps, energies = map(valuesModule.values, (temps, energies))

        if e_interp != 'flat':
            raise ValueError("unexpected energy interpolation encountered")

        axes = axesModule.axes(rank=3)
        axes[2] = axesModule.grid('temperature',
                                  2,
                                  'K',
                                  axesModule.pointsGridToken,
                                  values=temps,
                                  interpolation=t_interp)
        axes[1] = axesModule.grid('energy_in',
                                  1,
                                  'eV',
                                  axesModule.pointsGridToken,
                                  values=energies,
                                  interpolation=e_interp)
        axes[0] = axesModule.axis('S_cumulative', 0, 'eV*b')
        array = arrayModule.full(shape=(len(temps), len(energies)), data=data)
        Stab = griddedModule.gridded2d(axes, array, label="eval")

        section = TS.coherentElastic(TS.S_table(Stab))

    elif LTHR == 2:  # incoherent elastic
        line, dat = endfFileToGNDMisc.getTAB1(1, mf7)
        SB = TS.characteristicCrossSection(float(dat['C1']), 'b')

        e_interp = dat['interpolationInfo']
        if len(e_interp) > 1:
            raise ValueError(
                "only one interpolation region allowed for T_eff data")
        e_interp = endfFileToGNDMisc.ENDFInterpolationToGND1d(e_interp[0][1])

        t_axes = axesModule.axes(labelsUnits={
            1: ('temperature', 'K'),
            0: ('DebyeWallerIntegral', '1/eV')
        })
        if len(dat['data']) == 2 and dat['data'][0] == dat['data'][1]:
            dat['data'] = dat['data'][0:1]
        DbW = TS.DebyeWaller(dat['data'], axes=t_axes, interpolation=e_interp)
        section = TS.incoherentElastic(SB, DbW)

    elif LTHR == 0:  # incoherent inelastic
        line, listy = endfFileToGNDMisc.getList(1, mf7)
        LLN, NI, NS, b_n = listy['L1'], listy['NPL'], listy['N2'], listy[
            'data']
        if LLN:
            raise NotImplementedError("LLN != 0 not yet handled!")

        # b_n array contains information about principal / secondary scattering atoms
        atoms = [
            TS.scatteringAtom(label="0",
                              numberPerMolecule=int(b_n[5]),
                              mass=TS.mass(b_n[2], 'amu'),
                              freeAtomCrossSection=TS.freeAtomCrossSection(
                                  b_n[0], 'b'),
                              e_critical=TS.e_critical(b_n[1], 'eV'),
                              e_max=TS.e_max(b_n[3], 'eV'))
        ]
        for idx in range(1, NS + 1):
            functionalForm = {
                0.0: 'SCT',
                1.0: 'free_gas',
                2.0: 'diffusive_motion'
            }[b_n[6 * idx]]
            atoms.append(
                TS.scatteringAtom(label=str(idx),
                                  numberPerMolecule=b_n[6 * idx + 5],
                                  mass=TS.mass(b_n[6 * idx + 2], 'amu'),
                                  freeAtomCrossSection=TS.freeAtomCrossSection(
                                      b_n[6 * idx + 1], 'b'),
                                  functionalForm=functionalForm))

        line, t2header = endfFileToGNDMisc.getTAB2Header(line, mf7)
        n_betas = int(t2header['NZ'])

        # read first beta:
        line, temps, alphas, beta, data, a_interp, t_interp = readSTable(
            line, mf7)
        betas = [beta]

        # read in remaining betas:
        for idx in range(n_betas - 1):
            line, temps_, alphas_, beta, data_, a_interp_, t_interp_ = readSTable(
                line, mf7)
            if (temps_ != temps or alphas_ != alphas or a_interp_ != a_interp
                    or t_interp_ != t_interp):
                raise ValueError("inconsistent values!")
            betas.append(beta)
            data.extend(data_)

        temps, betas, alphas = map(valuesModule.values, (temps, betas, alphas))

        axes = axesModule.axes(rank=4)
        axes[3] = axesModule.grid('temperature',
                                  3,
                                  'K',
                                  axesModule.pointsGridToken,
                                  values=temps,
                                  interpolation=t_interp)
        axes[2] = axesModule.grid(
            'beta',
            2,
            '',
            axesModule.pointsGridToken,
            values=betas,
            interpolation=standardsModule.interpolation.flatToken)
        axes[1] = axesModule.grid('alpha',
                                  1,
                                  '',
                                  axesModule.pointsGridToken,
                                  values=alphas,
                                  interpolation=a_interp)
        axes[0] = axesModule.axis('S_alpha_beta', 0, 'eV*b')

        arrayShape_orig = (len(betas), len(temps), len(alphas))
        data = numpy.array(data).reshape(arrayShape_orig)
        # ENDF data are stored as 'beta,T,alpha'. Switch order to 'T,beta,alpha':
        data = numpy.transpose(data, axes=(1, 0, 2))
        arrayShape_new = (len(temps), len(betas), len(alphas))
        array = arrayModule.full(shape=arrayShape_new, data=data.flatten())
        Stab = griddedModule.gridded3d(axes, array, label="eval")

        S_tables = TS.S_alpha_beta(Stab)

        # last read T_eff tables. There must be at least one (for the principal scattering atom), plus more for
        # any other atoms that specify the short-collision-time approximation:
        line, t_eff = readT_effective(line, mf7)
        atoms[0].T_effective = t_eff
        for atom in atoms[1:]:
            if atom.functionalForm == 'SCT':
                line, t_eff = readT_effective(line, mf7)
                atom.T_effective = t_eff

        section = TS.incoherentInelastic(S_tables,
                                         calculatedAtThermal=LAT,
                                         asymmetric=LASYM,
                                         atoms=atoms)

    if line != len(mf7):
        raise ValueError("Trailing data left in MT%i MF7!" % mt)
    return LTHR, section
示例#8
0
文件: summed.py 项目: icmeyer/fudge
    def toCovarianceMatrix(self):
        '''
        Sum the parts to construct the covariance matrix.  
        Note, each part must be converted to an absolute covariance before summing.
        '''
        if len(self.pointerList) == 1:
            return self.pointerList[0].link['eval'].toCovarianceMatrix()
        import numpy, copy
        from .mixed import mixedForm
        from xData import values as valuesModule
        from xData import axes as axesModule
        from xData import array as arrayModule
        from xData import gridded as griddedModule

        # utility function to get a component as an absolute matrix over the correct row/column bounds
        # need special coding if mixed since only need the part of a mixedForm that overlaps with the current
        # covariance
        def __get_abs_cov_mtx(ptr):
            c = ptr.link['eval']
            if isinstance(c, mixedForm):
                c = c.shrinkToBounds(self.getRowBounds())
            return c.toCovarianceMatrix()

        # set up common data using first element in pointerList
        firstCovMtx = __get_abs_cov_mtx(
            self.pointerList[0]
        )  #.link['eval'].toCovarianceMatrix().toAbsolute()
        commonRowAxis = copy.copy(firstCovMtx.matrix.axes[2])
        if firstCovMtx.matrix.axes[1].style == 'link':
            commonColAxis = copy.copy(firstCovMtx.matrix.axes[2])
        else:
            commonColAxis = copy.copy(firstCovMtx.matrix.axes[1])
        commonMatrixAxis = copy.copy(firstCovMtx.matrix.axes[0])
        commonType = firstCovMtx.type
        coefficients = [p['coefficient'] for p in self.pointerList]

        # We're going to have to merge grids, so we'll need this function to do the dirty work
        def add_values(v1, v2):
            v = set()
            v.update(v1.values)
            v.update(v2.values)
            return valuesModule.values(sorted(v))

        # first pass through components is to collect bins to set up the common grid + do assorted checking
        for p in self.pointerList[1:]:
            cc = __get_abs_cov_mtx(
                p
            )  #.link['eval'].toCovarianceMatrix().toAbsolute() # a little recursion to take care of nested covariances
            if cc.type != commonType:
                raise ValueError("Incompatable types in " +
                                 str(self.__class__) + ": " + str(commonType) +
                                 ' vs. ' + str(cc.type))
            cc.matrix.axes[0].unit = commonMatrixAxis.unit
            cc.matrix.axes[1].convertToUnit(commonColAxis.unit)
            cc.matrix.axes[2].convertToUnit(commonRowAxis.unit)
            commonRowAxis._values = add_values(commonRowAxis.values,
                                               cc.matrix.axes[2].values)
            if cc.matrix.axes[1].style == 'link':
                commonColAxis.__values = add_values(commonColAxis.values,
                                                    cc.matrix.axes[2].values)
            else:
                commonColAxis.__values = add_values(commonColAxis.values,
                                                    cc.matrix.axes[1].values)

        # now sum up the components
        commonMatrix = self.pointerList[0]['coefficient'] * firstCovMtx.group(
            (commonRowAxis.values, commonColAxis.values),
            (commonRowAxis.unit,
             commonColAxis.unit)).matrix.array.constructArray()
        for p in self.pointerList[1:]:
            cc = p.link['eval'].toCovarianceMatrix(
            )  # a little recursion to take care of nested covariances
            commonMatrix += p['coefficient'] * cc.group(
                (commonRowAxis.data, commonColAxis.data),
                (commonRowAxis.unit,
                 commonColAxis.unit)).matrix.array.constructArray()

        # now create the instance of the resulting covarianceMatrix
        newAxes = axesModule.axes(
            labelsUnits={
                0: (commonMatrixAxis.label, commonMatrixAxis.unit),
                1: (commonColAxis.label, commonColAxis.unit),
                2: (commonRowAxis.label, commonRowAxis.unit)
            })
        newAxes[0] = commonMatrixAxis
        newAxes[1] = commonColAxis
        newAxes[2] = commonRowAxis
        trigdata = commonMatrix[numpy.tri(commonMatrix.shape[0]) ==
                                1.0].tolist()[0]
        return griddedModule.gridded(
            axes=newAxes,
            array=arrayModule.full(shape=commonMatrix.shape,
                                   data=trigdata,
                                   symmetry=arrayModule.symmetryLowerToken))
示例#9
0
    def setUp(self):
        # ...................... example matrix 'a' ......................
        axes = axesModule.axes(
            labelsUnits={
                0: ('matrix_elements', 'b**2'),
                1: ('column_energy_bounds', 'MeV'),
                2: ('row_energy_bounds', 'MeV')
            })
        axes[2] = axesModule.grid(axes[2].label,
                                  axes[2].index,
                                  axes[2].unit,
                                  style=axesModule.boundariesGridToken,
                                  values=valuesModule.values([
                                      1.0000E-07, 1.1109E-01, 1.3534E+00,
                                      1.9640E+01
                                  ]))
        axes[1] = axesModule.grid(axes[1].label,
                                  axes[1].index,
                                  axes[1].unit,
                                  style=axesModule.linkGridToken,
                                  values=linkModule.link(link=axes[2].values,
                                                         relative=True))
        myMatrix = arrayModule.full((3, 3), [4.0, 1.0, 9.0, 0.0, 0.0, 25.0],
                                    symmetry=arrayModule.symmetryLowerToken)
        self.a = covariances.covarianceMatrix(
            'eval',
            matrix=griddedModule.gridded2d(axes, myMatrix),
            type=covariances.tokens.relativeToken)

        # ...................... example matrix 'b' ......................
        axes = axesModule.axes(
            labelsUnits={
                0: ('matrix_elements', 'b**2'),
                1: ('column_energy_bounds', 'MeV'),
                2: ('row_energy_bounds', 'MeV')
            })
        axes[2] = axesModule.grid(axes[2].label,
                                  axes[2].index,
                                  axes[2].unit,
                                  style=axesModule.boundariesGridToken,
                                  values=valuesModule.values(
                                      [1.0e-5, 0.100, 1.0, 20.0]))
        axes[1] = axesModule.grid(axes[1].label,
                                  axes[1].index,
                                  axes[1].unit,
                                  style=axesModule.linkGridToken,
                                  values=linkModule.link(link=axes[2].values,
                                                         relative=True))
        myMatrix = arrayModule.full((3, 3), [4.0, 1.0, 9.0, 0.0, 0.0, 25.0],
                                    symmetry=arrayModule.symmetryLowerToken)
        self.b = covariances.covarianceMatrix(
            'eval',
            matrix=griddedModule.gridded2d(axes, myMatrix),
            type=covariances.tokens.relativeToken)

        # ...................... example matrix 'c' ......................
        axes = axesModule.axes(
            labelsUnits={
                0: ('matrix_elements', 'b**2'),
                1: ('column_energy_bounds', 'MeV'),
                2: ('row_energy_bounds', 'MeV')
            })
        axes[2] = axesModule.grid(axes[2].label,
                                  axes[2].index,
                                  axes[2].unit,
                                  style=axesModule.boundariesGridToken,
                                  values=valuesModule.values([
                                      1.0000E-07, 6.7380E-02, 1.1109E-01,
                                      1.3534E+00
                                  ]))
        axes[1] = axesModule.grid(axes[1].label,
                                  axes[1].index,
                                  axes[1].unit,
                                  style=axesModule.linkGridToken,
                                  values=linkModule.link(link=axes[2].values,
                                                         relative=True))
        myMatrix = arrayModule.full((3, 3), [4.0, 1.0, 9.0, 0.0, 0.0, 25.0],
                                    symmetry=arrayModule.symmetryLowerToken)
        self.c = covariances.covarianceMatrix(
            'eval',
            matrix=griddedModule.gridded2d(axes, myMatrix),
            type=covariances.tokens.relativeToken)

        # ...................... combine them for example matrix 'abc' ......................
        abc = covariances.mixed.mixedForm(components=[self.a, self.b, self.c])
        # FIXME: learn how to add abc to a section & to a covarianceSuite!, sumabc is built wrong!

        # ...................... 'sumabc' is just a way to exercise the summed class ......................
        bds = abc.getRowBounds()
        self.sumabc = covariances.summed.summedCovariance(
            label='test',
            domainMin=float(bds[0]),
            domainMax=float(bds[1]),
            domainUnit=abc[0].matrix.axes[-1].unit,
            pointerList=[
                linkModule.link(link=abc, path=abc.toXLink(), coefficient=1.0)
            ])
示例#10
0
文件: summed.py 项目: alhajri/FUDGE
    def toCovarianceMatrix(self, label="composed"):
        """
        Sum the parts to construct the covariance matrix.
        Note, each part must be converted to an absolute covariance before summing.
        """
        if len(self.pointerList) == 1:
            return self.pointerList[0].link['eval'].toCovarianceMatrix()
        import numpy, copy
        from .mixed import mixedForm
        from .base import covarianceMatrix
        from xData import values as valuesModule
        from xData import axes as axesModule
        from xData import array as arrayModule
        from xData import gridded as griddedModule

        # We need all the covariances to be either absolute or relative
        commonType = None

        def make_common_type(p):
            cm = p.link['eval']
            if isinstance(cm, covarianceMatrix): cm = cm.toCovarianceMatrix()
            elif isinstance(cm, mixedForm):

                def inRange(thisBounds, otherBounds):
                    return otherBounds[0] >= thisBounds[0] and otherBounds[
                        1] <= thisBounds[1]

                newMixed = mixedForm()
                for ic, c in enumerate(cm.components):
                    if c.getRowBounds() != c.getColumnBounds():
                        raise ValueError(
                            "All components must have their row and column covarianceAxes matching."
                        )
                    c = copy.copy(c)
                    # prune zero rows/columns covarianceMatrices, just in case
                    if isinstance(c, covarianceMatrix):
                        c.removeExtraZeros()
                        # newMixed.addComponent(c)
                    elif isinstance(c, mixedForm):
                        c.makeSafeBounds()
                    # add sub matrix if it fits
                    if inRange(self.getRowBounds(), c.getRowBounds()):
                        newMixed.addComponent(c)
                cm = newMixed.toCovarianceMatrix()
            if commonType == 'relative': return cm.toRelative()
            elif commonType == 'absolute': return cm.toAbsolute()
            else: return cm

        # Set up common data using first element in pointerList
        firstCovMtx = make_common_type(self.pointerList[0])
        commonRowAxis = firstCovMtx.matrix.axes[2].copy(
            [])  #FIXME: unresolvedLinks are still unresolved!
        if firstCovMtx.matrix.axes[1].style == 'link':
            commonColAxis = firstCovMtx.matrix.axes[2].copy(
                [])  #FIXME: unresolvedLinks are still unresolved!
        else:
            commonColAxis = firstCovMtx.matrix.axes[1].copy(
                [])  #FIXME: unresolvedLinks are still unresolved!
        commonMatrixAxis = firstCovMtx.matrix.axes[0].copy(
            [])  #FIXME: unresolvedLinks are still unresolved!
        commonType = firstCovMtx.type

        # We're going to have to merge grids, so we'll need this function to do the dirty work
        def add_values(v1, v2):
            v = set()
            v.update(v1.values)
            v.update(v2.values)
            return valuesModule.values(sorted(v))

        # First pass through components is to collect bins to set up the common grid + do assorted checking
        for p in self.pointerList[1:]:
            cc = make_common_type(
                p
            )  #__get_abs_cov_mtx(p) #.link['eval'].toCovarianceMatrix().toAbsolute() # a little recursion to take care of nested covariances
            if cc.type != commonType:
                raise ValueError("Incompatable types in " +
                                 str(self.__class__) + ": " + str(commonType) +
                                 ' vs. ' + str(cc.type))
            cc.matrix.axes[0].unit = commonMatrixAxis.unit
            cc.matrix.axes[1].convertToUnit(commonColAxis.unit)
            cc.matrix.axes[2].convertToUnit(commonRowAxis.unit)
            commonRowAxis.values.values = add_values(commonRowAxis.values,
                                                     cc.matrix.axes[2].values)
            if cc.matrix.axes[1].style == 'link':
                commonColAxis.values.values = add_values(
                    commonColAxis.values, cc.matrix.axes[2].values)
            else:
                commonColAxis.values.values = add_values(
                    commonColAxis.values, cc.matrix.axes[1].values)

        # Now sum up the components
        commonMatrix = self.pointerList[0]['coefficient'] * firstCovMtx.group(
            (commonRowAxis.values.values, commonColAxis.values.values),
            (commonRowAxis.unit,
             commonColAxis.unit)).matrix.array.constructArray()
        for p in self.pointerList[1:]:
            cc = make_common_type(
                p)  # a little recursion to take care of nested covariances
            commonMatrix += p['coefficient'] * cc.group(
                (commonRowAxis.values.values, commonColAxis.values.values),
                (commonRowAxis.unit,
                 commonColAxis.unit)).matrix.array.constructArray()

        # Now create the instance of the resulting covarianceMatrix
        newAxes = axesModule.axes(
            labelsUnits={
                0: (commonMatrixAxis.label, commonMatrixAxis.unit),
                1: (commonColAxis.label, commonColAxis.unit),
                2: (commonRowAxis.label, commonRowAxis.unit)
            })

        newAxes[2] = axesModule.grid(commonRowAxis.label,
                                     commonRowAxis.index,
                                     commonRowAxis.unit,
                                     style=axesModule.boundariesGridToken,
                                     values=commonRowAxis.values)
        newAxes[1] = axesModule.grid(commonColAxis.label,
                                     commonColAxis.index,
                                     commonColAxis.unit,
                                     style=axesModule.linkGridToken,
                                     values=linkModule.link(
                                         link=commonRowAxis.values,
                                         relative=True))
        newAxes[0] = axesModule.axis(commonMatrixAxis.label,
                                     commonMatrixAxis.index,
                                     commonMatrixAxis.unit)
        trigdata = commonMatrix[numpy.tri(commonMatrix.shape[0]) ==
                                1.0].tolist()
        gridded = griddedModule.gridded2d(
            axes=newAxes,
            array=arrayModule.full(shape=commonMatrix.shape,
                                   data=trigdata,
                                   symmetry=arrayModule.symmetryLowerToken))
        newCov = covarianceMatrix(label=label, type=commonType, matrix=gridded)
        newCov.setAncestor(self.ancestor)
        return newCov