示例#1
0
    def fromXYs(cls, xys, value=None):

        if (xys.interpolation not in [
                standardsModule.interpolation.linlinToken,
                standardsModule.interpolation.flatToken
        ]):
            xys = xys.toPointwise_withLinearXYs(accuracy=1e-3,
                                                lowerEps=0,
                                                upperEps=1e-8)
        try:
            norm = xys.normalize()
        except:
            norm = xys.copy()
            norm[0] = [norm[0][0], 1.0]
            norm = norm.normalize()
            print '    WARNGING: xs_pdf_cdf1d.fromXYs; distribution with 0 norm.'
        _cdf = norm.runningIntegral()
        _xs, _pdf = norm.copyDataToXsAndYs()
        _xs = xs(valuesModule.values(_xs))
        _pdf = pdf(valuesModule.values(_pdf))
        _cdf = cdf(valuesModule.values(_cdf))

        return (cls(_xs,
                    _pdf,
                    _cdf,
                    value=value,
                    interpolation=xys.interpolation))
示例#2
0
文件: group.py 项目: alhajri/FUDGE
def toMultiGroup1d( cls, style, tempInfo, _axes, data, addLabel = True ) :
    """
    This function takes 1-d multi-group data as a list of floats and return to 1-d gridded instance
    containing the multi-group data. The list of data must contain n values where n is the
    number of groups.
    """

    reactionSuite = tempInfo['reactionSuite']

    axes = axesModule.axes( rank = 2 )
    axes[0] = axesModule.axis( _axes[0].label, 0, _axes[0].unit )
    energyInGrid = style.transportables[reactionSuite.projectile].group.boundaries.values.copy( )
    axes[1] = axesModule.grid( _axes[1].label, 1, _axes[1].unit, axesModule.boundariesGridToken, energyInGrid )
    shape = [ len( data ) ]
    data = valuesModule.values( data )
    for start, datum in enumerate( data ) :
        if( datum != 0 ) : break
    end = 0
    for i1, datum in enumerate( data ) :
        if( datum != 0 ) : end = i1
    if( start > end ) :                     # Only happens when all values are 0.
        start = 0
    else :
        end += 1
    data = data[start:end]
    starts = valuesModule.values( [ start ], valueType = standardsModule.types.integer32Token )
    lengths = valuesModule.values( [ len( data ) ], valueType = standardsModule.types.integer32Token )
    flattened = arrayModule.flattened( shape = shape, data = data, starts = starts, lengths = lengths )
    label = None
    if( addLabel ) : label = style.label
    return( cls( label = label, axes = axes, array = flattened ) )
示例#3
0
文件: group.py 项目: alhajri/FUDGE
def TMs2Form( style, tempInfo, TM_1, TM_E ) :

    from fudge.processing import transportables as transportablesModule
    from fudge.gnd.productData.distributions import multiGroup as multiGroupModule

    reactionSuite = tempInfo['reactionSuite']
    productName = tempInfo['productName']
    transportable = style.transportables[productName]
    conserve = transportable.conserve
    energyUnit = tempInfo['incidentEnergyUnit']

# BRB hardwired.
    crossSectionUnit = 'b'                          # ?????? 'b' should not be hardwired.
    axes = axesModule.axes( rank = 4 )
    axes[0] = axesModule.axis( 'C_l(energy_in,energy_out)', 0, crossSectionUnit )
    lMaxPlus1 = len( TM_1[0][0] )
    lGrid = valuesModule.values( [ i1 for i1 in range( lMaxPlus1 ) ], valueType = standardsModule.types.integer32Token )
    axes[1] = axesModule.grid( 'l',                         1,         '', axesModule.parametersGridToken, lGrid )
    energyOutGrid = style.transportables[productName].group.boundaries.values.copy( )
    axes[2] = axesModule.grid( 'energy_out',                2, energyUnit, axesModule.boundariesGridToken, energyOutGrid )
    energyInGrid = style.transportables[reactionSuite.projectile].group.boundaries.values.copy( )
    axes[3] = axesModule.grid( 'energy_in',                 3, energyUnit, axesModule.boundariesGridToken, energyInGrid )
    if( conserve == transportablesModule.conserve.number ) :
        TM = TM_1
    else :
        raise NotImplementedError( 'Need to implement' )

    n1 = len( TM )
    n2 = len( TM[0] )
    n3 = len( TM[0][0] )
    data, starts, lengths = [], [], []
    for i1 in sorted( TM.keys( ) ) :
        TM_i1 = TM[i1]
        start, length = None, 0
        for i2 in sorted( TM_i1.keys( ) ) :
            TM_i1_i2 = TM_i1[i2]
            cellMin = min( TM_i1_i2 )
            cellMax = max( TM_i1_i2 )
            if( ( cellMin != 0 ) or ( cellMax != 0 ) ) :
                if( start is None ) : start = n3 * ( n2 * i1 + i2 )
                length += n3
                data += TM_i1_i2
            else :
                if( start is not None ) : 
                    starts.append( start )
                    lengths.append( length )
                    start, length = None, 0
        if( start is not None ) : 
            starts.append( start )
            lengths.append( length )
    shape = [ n1, n2, n3 ]
    data = valuesModule.values( data )
    starts = valuesModule.values( starts, valueType = standardsModule.types.integer32Token )
    lengths = valuesModule.values( lengths, valueType = standardsModule.types.integer32Token )
    flattened = arrayModule.flattened( shape = shape, data = data, starts = starts, lengths = lengths, 
            dataToString = multiGroupModule.gridded3d.dataToString )
    gridded3d = multiGroupModule.gridded3d( axes = axes, array = flattened )
    return( multiGroupModule.form( style.label, standardsModule.frames.labToken, gridded3d ) )
示例#4
0
    def convertUnits(self, unitMap):
        """
        unitMap is a dictionary of the for { 'eV' : 'MeV', 'b' : 'mb' }.
        """

        factors = self.axes.convertUnits(unitMap)
        yFactor = factors[0]
        self.__Ys = valuesModule.values(
            [yFactor * value for value in self.__Ys])
        self.fixValuePerUnitChange(factors)
示例#5
0
    def processMultiGroup(self, style, tempInfo, indent):

        reactionSuite = tempInfo['reactionSuite']
        axes = self.data.axes.copy()
        axes[1] = axesModule.grid(
            axes[1].label,
            1,
            axes[1].unit,
            style=axesModule.parametersGridToken,
            values=valuesModule.values(
                [0], valueType=standardsModule.types.integer32Token))
        axes[2] = style.transportables[
            reactionSuite.projectile].group.boundaries.copy([])
        data = self.data.processMultiGroup(style, tempInfo, indent)
        starts = valuesModule.values(
            [0], valueType=standardsModule.types.integer32Token)
        lengths = valuesModule.values(
            [len(data)], valueType=standardsModule.types.integer32Token)
        array = arrayModule.flattened(shape=(len(data), 1),
                                      data=data,
                                      starts=starts,
                                      lengths=lengths)
        data = gridded2d(axes=axes, array=array)
        return (data)
示例#6
0
文件: mixed.py 项目: alhajri/FUDGE
 def add_values(v1, v2):
     v = set()
     v.update(v1.values)
     v.update(v2.values)
     return valuesModule.values(sorted(v))
示例#7
0
    fluxData.append(fluxModule.LegendreSeries([C0], value=newE, axes=axes))
flux = fluxModule.flux(args.fluxID, fluxData)

if not (args.gid == None):
    for gidVal in args.gid:
        key, value = gidVal.split('=')
        if key not in gids:
            raise UserWarning(
                "particle grouping specified for unknown particle name : %s " %
                (key))
        gids[key] = value

transportables = []
for particle in gids:
    gbs = valuesModule.values([
        PQUModule.PQU(boundary, 'MeV').getValueAs(args.energyUnit)
        for boundary in bdfls.group(gids[particle]).gb
    ])
    grid = axesModule.grid('energy_in', 0, args.energyUnit,
                           axesModule.boundariesGridToken, gbs)
    group = groupModule.group(gids[particle], grid)
    transportables.append(
        transportablesModule.transportable(
            particle, transportablesModule.conserve.number, group))

#### read in GND file
reactionSuite = reactionSuiteModule.readXML(args.gnd)

if (reactionSuite.projectile != IDsPoPsModule.neutron): tempsDefault = 0
if (args.temperatures == None): args.temperatures = [tempsDefault]

### fail on detection of existing processed data
示例#8
0
    def setUp(self):
        # ...................... example matrix 'a' ......................
        axes = axesModule.axes(
            labelsUnits={
                0: ('matrix_elements', 'b**2'),
                1: ('column_energy_bounds', 'MeV'),
                2: ('row_energy_bounds', 'MeV')
            })
        axes[2] = axesModule.grid(axes[2].label,
                                  axes[2].index,
                                  axes[2].unit,
                                  style=axesModule.boundariesGridToken,
                                  values=valuesModule.values([
                                      1.0000E-07, 1.1109E-01, 1.3534E+00,
                                      1.9640E+01
                                  ]))
        axes[1] = axesModule.grid(axes[1].label,
                                  axes[1].index,
                                  axes[1].unit,
                                  style=axesModule.linkGridToken,
                                  values=linkModule.link(link=axes[2].values,
                                                         relative=True))
        myMatrix = arrayModule.full((3, 3), [4.0, 1.0, 9.0, 0.0, 0.0, 25.0],
                                    symmetry=arrayModule.symmetryLowerToken)
        self.a = covariances.covarianceMatrix(
            'eval',
            matrix=griddedModule.gridded2d(axes, myMatrix),
            type=covariances.tokens.relativeToken)

        # ...................... example matrix 'b' ......................
        axes = axesModule.axes(
            labelsUnits={
                0: ('matrix_elements', 'b**2'),
                1: ('column_energy_bounds', 'MeV'),
                2: ('row_energy_bounds', 'MeV')
            })
        axes[2] = axesModule.grid(axes[2].label,
                                  axes[2].index,
                                  axes[2].unit,
                                  style=axesModule.boundariesGridToken,
                                  values=valuesModule.values(
                                      [1.0e-5, 0.100, 1.0, 20.0]))
        axes[1] = axesModule.grid(axes[1].label,
                                  axes[1].index,
                                  axes[1].unit,
                                  style=axesModule.linkGridToken,
                                  values=linkModule.link(link=axes[2].values,
                                                         relative=True))
        myMatrix = arrayModule.full((3, 3), [4.0, 1.0, 9.0, 0.0, 0.0, 25.0],
                                    symmetry=arrayModule.symmetryLowerToken)
        self.b = covariances.covarianceMatrix(
            'eval',
            matrix=griddedModule.gridded2d(axes, myMatrix),
            type=covariances.tokens.relativeToken)

        # ...................... example matrix 'c' ......................
        axes = axesModule.axes(
            labelsUnits={
                0: ('matrix_elements', 'b**2'),
                1: ('column_energy_bounds', 'MeV'),
                2: ('row_energy_bounds', 'MeV')
            })
        axes[2] = axesModule.grid(axes[2].label,
                                  axes[2].index,
                                  axes[2].unit,
                                  style=axesModule.boundariesGridToken,
                                  values=valuesModule.values([
                                      1.0000E-07, 6.7380E-02, 1.1109E-01,
                                      1.3534E+00
                                  ]))
        axes[1] = axesModule.grid(axes[1].label,
                                  axes[1].index,
                                  axes[1].unit,
                                  style=axesModule.linkGridToken,
                                  values=linkModule.link(link=axes[2].values,
                                                         relative=True))
        myMatrix = arrayModule.full((3, 3), [4.0, 1.0, 9.0, 0.0, 0.0, 25.0],
                                    symmetry=arrayModule.symmetryLowerToken)
        self.c = covariances.covarianceMatrix(
            'eval',
            matrix=griddedModule.gridded2d(axes, myMatrix),
            type=covariances.tokens.relativeToken)

        # ...................... combine them for example matrix 'abc' ......................
        abc = covariances.mixed.mixedForm(components=[self.a, self.b, self.c])
        # FIXME: learn how to add abc to a section & to a covarianceSuite!, sumabc is built wrong!

        # ...................... 'sumabc' is just a way to exercise the summed class ......................
        bds = abc.getRowBounds()
        self.sumabc = covariances.summed.summedCovariance(
            label='test',
            domainMin=float(bds[0]),
            domainMax=float(bds[1]),
            domainUnit=abc[0].matrix.axes[-1].unit,
            pointerList=[
                linkModule.link(link=abc, path=abc.toXLink(), coefficient=1.0)
            ])