class Model(ModelBase): def __init__(self): # load config file config = json.load(open("model/config.json")) # get the image processor self._imageProcessor = ImageProcessor(config) # load the DL model self._model = Xception() self._model.load_weights('model/model.h5') self._model._make_predict_function() def infer(self, input): # load preprocessed input inputAsNpArr = self._imageProcessor.loadAndPreprocess(input) # Run inference with caffe2 results = self._model.predict(inputAsNpArr) # postprocess results into output output = self._imageProcessor.computeOutput(results) return output
steps_per_epoch=x_train.shape[0] // batch_size) else: History = model.fit_generator(datagen.flow(x_train, y_train, batch_size=batch_size), epochs=epochs, verbose=1, steps_per_epoch=x_train.shape[0] // batch_size) #generate submission if (options.save_submission): print("generate submission...") predict = np.argmax(model.predict(test), axis=1) output = pd.DataFrame(le.inverse_transform(predict)) output.columns output.columns = ['Expected'] output.index.name = "Id" output.to_csv("../submission/submission_" + options.model + versioninfo + ".csv") #save weight if (options.save_weight): print("save weight...") model.save_weights("../weight/" + options.model + versioninfo + ".h5") #save history if (options.save_history): print("save history...")