示例#1
0
def test_arithmetic():
    spec1 = Spectrum.from_powerlaw(1.0, 0.05, 1.0e-4, 0.1, 10.0, 10000)
    spec2 = Spectrum.from_powerlaw(2.0, 0.01, 1.0e-3, 0.1, 10.0, 10000)
    spec3 = spec1 + spec2
    flux3 = spec1.flux + spec2.flux

    assert_allclose(spec3.flux, flux3)

    spec4 = spec3 * 3.0
    spec5 = 3.0 * spec3

    flux4 = spec3.flux * 3.0

    assert_allclose(spec4.flux, spec5.flux)
    assert_allclose(spec4.flux, flux4)

    spec6 = spec3 / 2.5
    flux6 = spec3.flux / 2.5

    assert_allclose(spec6.flux, flux6)

    spec7 = Spectrum.from_constant(1.0e-4, 0.1, 10.0, 10000)
    spec8 = spec1 + spec7

    assert_allclose(spec8.flux.value, spec1.flux.value + 1.0e-4)
示例#2
0
def test_absorption_line(answer_store, answer_dir):
    tmpdir = tempfile.mkdtemp()
    curdir = os.getcwd()
    os.chdir(tmpdir)

    const_flux = 1.0e-3
    line_pos = 1.0
    line_width = 0.02
    line_amp = 1.0e-5

    exp_time = (100.0, "ks")
    inst_name = "lynx_xgs"

    spec = Spectrum.from_constant(const_flux, 0.1, 3.0, 100000)
    spec.add_absorption_line(line_pos, line_width, line_amp)

    spectrum_answer_testing(spec, "absorption_line_test.h5", answer_store,
                            answer_dir)

    simulate_spectrum(spec, inst_name, exp_time, "absorption_line_evt.pha",
                      overwrite=True)

    file_answer_testing("SPECTRUM", "absorption_line_evt.pha", answer_store,
                        answer_dir)

    os.chdir(curdir)
    shutil.rmtree(tmpdir)
示例#3
0
def test_read_write():

    tmpdir = tempfile.mkdtemp()
    curdir = os.getcwd()
    os.chdir(tmpdir)

    spec1 = Spectrum.from_powerlaw(1.0, 0.05, 1.0e-4, 0.1, 10.0, 10000)
    spec1.write_file("test_spec.dat", overwrite=True)
    spec2 = Spectrum.from_file("test_spec.dat")

    assert_allclose(spec1.flux, spec2.flux)
    assert_allclose(spec1.emid, spec2.emid)
    assert_allclose(spec1.ebins, spec2.ebins)
    assert_allclose(spec1.cumspec, spec2.cumspec)

    os.chdir(curdir)
    shutil.rmtree(tmpdir)
示例#4
0
def test_convolved_spectra():
    arf = AuxiliaryResponseFile("xrs_hdxi_3x10.arf")
    spec1 = Spectrum.from_powerlaw(2.0, 0.01, 1.0, 0.1, 10.0, 1000)
    cspec1 = ConvolvedSpectrum(spec1, arf)
    cspec2 = spec1 * arf
    spec2 = cspec1.deconvolve()
    assert_array_equal(cspec1.ebins.value, cspec2.ebins.value)
    assert_array_equal(spec1.ebins.value, spec2.ebins.value)
    assert_array_equal(cspec1.flux.value, cspec2.flux.value)
    assert_allclose(spec1.flux.value, spec2.flux.value)
示例#5
0
def test_rescale_flux():
    spec = Spectrum.from_powerlaw(2.0, 0.01, 1.0, 0.1, 10.0, 10000)

    spec.rescale_flux(1.0e-4, emin=0.5, emax=7.0, flux_type="photons")
    f = spec.get_flux_in_band(0.5, 7.0)[0]
    assert_allclose(1.0e-4, f.value)

    spec.rescale_flux(1.0e-12, emin=0.4, emax=1.0, flux_type="energy")
    f = spec.get_flux_in_band(0.4, 1.0)[1]
    assert_allclose(1.0e-12, f.value)
示例#6
0
 def to_scaled_spectrum(self, fov, focal_length=None):
     from xcs_soxs.instrument import FlatResponse
     fov = parse_value(fov, "arcmin")
     if focal_length is None:
         focal_length = self.default_focal_length
     else:
         focal_length = parse_value(focal_length, "m")
     flux = self.flux.value * fov * fov
     flux *= (focal_length / self.default_focal_length)**2
     arf = FlatResponse(self.ebins.value[0], self.ebins.value[-1], 1.0,
                        self.ebins.size - 1)
     return ConvolvedSpectrum(Spectrum(self.ebins.value, flux), arf)
示例#7
0
def plaw_fit(alpha_sim, answer_store, answer_dir):

    tmpdir = tempfile.mkdtemp()
    curdir = os.getcwd()
    os.chdir(tmpdir)

    nH_sim = 0.02
    norm_sim = 1.0e-4
    redshift = 0.01

    exp_time = (50.0, "ks")
    area = 40000.0
    inst_name = "new_hdxi"

    spec = Spectrum.from_powerlaw(alpha_sim, redshift, norm_sim, 0.1, 10.0,
                                  20000)
    spec.apply_foreground_absorption(nH_sim, model="tbabs")

    spectrum_answer_testing(spec, "power_law_%s.h5" % alpha_sim, answer_store,
                            answer_dir)

    pt_src_pos = PointSourceModel(30.0, 45.0)
    sim_cat = SimputCatalog.from_models("plaw_model",
                                        "plaw_model",
                                        spec,
                                        pt_src_pos,
                                        exp_time,
                                        area,
                                        prng=prng)
    sim_cat.write_catalog(overwrite=True)

    instrument_simulator("plaw_model_simput.fits",
                         "plaw_model_%s_evt.fits" % alpha_sim,
                         exp_time,
                         inst_name, [30.0, 45.0],
                         instr_bkgnd=False,
                         ptsrc_bkgnd=False,
                         foreground=False,
                         prng=prng)

    write_spectrum("plaw_model_%s_evt.fits" % alpha_sim,
                   "plaw_model_%s_evt.pha" % alpha_sim,
                   overwrite=True)

    file_answer_testing("EVENTS", "plaw_model_%s_evt.fits" % alpha_sim,
                        answer_store, answer_dir)
    file_answer_testing("SPECTRUM", "plaw_model_%s_evt.pha" % alpha_sim,
                        answer_store, answer_dir)

    os.chdir(curdir)
    shutil.rmtree(tmpdir)
示例#8
0
def test_append():
    tmpdir = tempfile.mkdtemp()
    curdir = os.getcwd()
    os.chdir(tmpdir)

    exp_time = (50.0, "ks")
    area = (4.0, "m**2")

    ra0 = 30.0
    dec0 = 45.0

    spec = Spectrum.from_powerlaw(1.1, 0.05, 1.0e-4, 0.1, 10.0, 10000)

    e1 = spec.generate_energies(exp_time, area, prng=prng)

    ra1, dec1 = PointSourceModel(ra0 + 0.05,
                                 dec0 + 0.05).generate_coords(e1.size,
                                                              prng=prng)

    e2 = spec.generate_energies(exp_time, area, prng=prng)

    ra2, dec2 = PointSourceModel(ra0 - 0.05,
                                 dec0 - 0.05).generate_coords(e1.size,
                                                              prng=prng)

    write_photon_list("pt_src",
                      "pt_src1",
                      e1.flux,
                      ra1,
                      dec1,
                      e1,
                      overwrite=True)

    write_photon_list("pt_src", "pt_src2", e2.flux, ra2, dec2, e2, append=True)

    assert os.path.exists("pt_src_simput.fits")
    assert os.path.exists("pt_src1_phlist.fits")
    assert os.path.exists("pt_src2_phlist.fits")

    f = pyfits.open("pt_src_simput.fits")
    cat = f["SRC_CAT"].data["SPECTRUM"]
    assert cat[0] == "pt_src1_phlist.fits[PHLIST,1]"
    assert cat[1] == "pt_src2_phlist.fits[PHLIST,1]"
    f.close()

    os.chdir(curdir)
    shutil.rmtree(tmpdir)
示例#9
0
def test_emission_line(answer_store, answer_dir):
    tmpdir = tempfile.mkdtemp()
    curdir = os.getcwd()
    os.chdir(tmpdir)

    const_flux = 1.0e-4
    line_pos = 5.0
    line_width = 0.02
    line_amp = 1.0e-5

    exp_time = (100.0, "ks")
    area = 30000.0
    inst_name = "lynx_lxm"

    spec = Spectrum.from_constant(const_flux, 1.0, 10.0, 20000)
    spec.add_emission_line(line_pos, line_width, line_amp)

    spectrum_answer_testing(spec, "emission_line_test.h5", answer_store,
                            answer_dir)

    pt_src_pos = PointSourceModel(30.0, 45.0)
    sim_cat = SimputCatalog.from_models("emission_line", "emission_line", spec, 
                                        pt_src_pos, exp_time, area, prng=prng)
    sim_cat.write_catalog(overwrite=True)

    instrument_simulator("emission_line_simput.fits", "emission_line_evt.fits",
                         exp_time, inst_name, [30.0, 45.0], instr_bkgnd=False,
                         ptsrc_bkgnd=False, foreground=False, prng=prng)

    write_spectrum("emission_line_evt.fits", "emission_line_evt.pha",
                   overwrite=True)

    file_answer_testing("EVENTS", "emission_line_evt.fits", answer_store, 
                        answer_dir)
    file_answer_testing("SPECTRUM", "emission_line_evt.pha", answer_store,
                        answer_dir)

    os.chdir(curdir)
    shutil.rmtree(tmpdir)
示例#10
0
 def to_spectrum(self, fov):
     fov = parse_value(fov, "arcmin")
     flux = self.flux.value * fov * fov
     return Spectrum(self.ebins.value, flux)