def InferImage(net, image, labels): import numpy as np import xdnn_io global board_avail transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape}) transformer.set_transpose('data', (2, 0, 1)) transformer.set_mean('data', np.array([104, 117, 123])) transformer.set_raw_scale('data', 255) transformer.set_channel_swap('data', (2, 1, 0)) # if using RGB instead if BGR img = caffe.io.load_image(image) net.blobs['data'].data[...] = transformer.preprocess('data', img) ptxtShape = net.blobs["data"].data.shape print("Running with shape of: ", ptxtShape) with board_avail: out = net.forward() for key in out: try: if out[key].shape[1] == 1000: softmax = out[key] except: pass Labels = xdnn_io.get_labels(labels) xdnn_io.printClassification(softmax, [image], Labels) result = xdnn_io.getClassification(softmax, [image], Labels) return result
def main(argv): args = xdnn_io.processCommandLine(argv) ret, handles = xdnn.createHandle(args['xclbin'], "kernelSxdnn_0") # ret = xdnn.createHandle(g_xclbin, "kernelSxdnn_0", g_xdnnLib) if ret != 0: sys.exit(1) labels = xdnn_io.get_labels(args['labels']) # TODO dict of tuples instead? fpgaRT = {} fpgaOutputs = {} fcWeights = {} fcBiases = {} netFiles = {} confNames = [] args = args['jsoncfg'] # we do not use other args' keys for netconf_args in args: confName = str(netconf_args['name']) confNames += [confName] # netconf_args['netcfg'] = './data/{}_{}.json'.format(netconf_args['net'], netconf_args['dsp']) fpgaRT[confName] = xdnn.XDNNFPGAOp(handles, netconf_args) netconf_args['in_shape'] = tuple((netconf_args['batch_sz'],) + tuple(fpgaRT[confName].getInputDescriptors().itervalues().next()[1:] )) (fcWeights[confName], fcBiases[confName]) = xdnn_io.loadFCWeightsBias(netconf_args) fpgaOutputs[confName] = np.empty ((netconf_args['batch_sz'], int(netconf_args['fpgaoutsz']),), dtype=np.float32, order='C') netFiles[confName] = str(netconf_args['netcfg']) batchArrays = [] for streamId, netconf_args in enumerate(args): batchArrays.append(np.empty(netconf_args['in_shape'], dtype=np.float32, order='C')) pl = [] img_paths = xdnn_io.getFilePaths(netconf_args['images']) for j, p in enumerate(img_paths[:netconf_args['batch_sz']]): batchArrays[-1][j, ...], _ = xdnn_io.loadImageBlobFromFile(p, netconf_args['img_raw_scale'], netconf_args['img_mean'], netconf_args['img_input_scale'], netconf_args['in_shape'][2], netconf_args['in_shape'][3]) pl.append(p) confName = str(netconf_args['name']) firstInputName = fpgaRT[confName].getInputs().iterkeys().next() firstOutputName = fpgaRT[confName].getOutputs().iterkeys().next() fpgaRT[confName].exec_async({ firstInputName : batchArrays[-1] }, { firstOutputName : fpgaOutputs[confName] }, streamId) for streamId, confName in enumerate(confNames): fpgaRT[confName].get_result (streamId) for netconf_args in args: confName = str(netconf_args['name']) fcOut = np.empty( (netconf_args['batch_sz'], netconf_args['outsz']), dtype=np.float32, order = 'C') xdnn.computeFC (fcWeights[confName], fcBiases[confName], fpgaOutputs[confName], fcOut) softmaxOut = xdnn.computeSoftmax(fcOut) xdnn_io.printClassification(softmaxOut, netconf_args['images'], labels); xdnn.closeHandle()
def main(): args = xdnn_io.processCommandLine() ret, handles = xdnn.createHandle(args['xclbin'], "kernelSxdnn_0") if ret != 0: sys.exit(1) fpgaRT = xdnn.XDNNFPGAOp(handles, args) fcWeight, fcBias = xdnn_io.loadFCWeightsBias(args) img_paths = xdnn_io.getFilePaths(args['images']) fpgaOutput = np.empty(( args['batch_sz'], args['fpgaoutsz'], ), dtype=np.float32, order='C') fcOutput = np.empty(( args['batch_sz'], args['outsz'], ), dtype=np.float32, order='C') batch_array = np.empty(((args['batch_sz'], ) + args['in_shape']), dtype=np.float32, order='C') labels = xdnn_io.get_labels(args['labels']) if args['golden']: goldenMap = xdnn_io.getGoldenMap(args['golden']) top5Count = 0 top1Count = 0 for i in xrange(0, len(img_paths), args['batch_sz']): pl = [] for j, p in enumerate(img_paths[i:i + args['batch_sz']]): batch_array[j, ...], _ = xdnn_io.loadImageBlobFromFile( p, args['img_raw_scale'], args['img_mean'], args['img_input_scale'], args['in_shape'][2], args['in_shape'][1]) pl.append(p) fpgaRT.execute(batch_array, fpgaOutput) xdnn.computeFC(fcWeight, fcBias, fpgaOutput, args['batch_sz'], args['outsz'], args['fpgaoutsz'], fcOutput) softmaxOut = xdnn.computeSoftmax(fcOutput) xdnn_io.printClassification(softmaxOut, pl, labels) if args['golden']: for j, p in enumerate(img_paths[i:i + args['batch_sz']]): top1Count += xdnn_io.isTopK(softmaxOut[j], goldenMap, p, labels, 1) top5Count += xdnn_io.isTopK(softmaxOut[j], goldenMap, p, labels, 5) xdnn.closeHandle() if args['golden']: print("\nAverage accuracy (n=%d) Top-1: %.1f%%, Top-5: %.1f%%\n") % ( len(img_paths), float(top1Count) / float(len(img_paths)) * 100., float(top5Count) / float(len(img_paths)) * 100.)
def main(): args = xdnn_io.processCommandLine() ret = xdnn.createHandle(args['xclbin'], "kernelSxdnn_0", args['xlnxlib']) if ret != 0: sys.exit(1) (weightsBlob, fcWeight, fcBias) = xdnn_io.loadWeights(args) (fpgaInputs, batch_sz) = xdnn_io.prepareInput(args) fpgaOutput = xdnn_io.prepareOutput(args['fpgaoutsz'], batch_sz) for i in range(1): startTime = timeit.default_timer() xdnn.execute( args['netcfg'], weightsBlob, fpgaInputs, fpgaOutput, batch_sz, # num batches args['quantizecfg'], args['scaleB'], args['PE']) elapsedTime = timeit.default_timer() - startTime print "\nAfter FPGA (%f ms)" % (elapsedTime * 1000) startTime = timeit.default_timer() fcOut = xdnn.computeFC(fcWeight, fcBias, fpgaOutput, batch_sz, args['outsz'], args['fpgaoutsz'], args['useblas']) elapsedTime = timeit.default_timer() - startTime print "\nAfter FC (%f ms)" % (elapsedTime * 1000) #for i in range(10): # print "%f" % fpgaOutput[i], startTime = timeit.default_timer() softmaxOut = xdnn.computeSoftmax(fcOut, batch_sz) elapsedTime = timeit.default_timer() - startTime print "\nAfter Softmax (%f ms)" % (elapsedTime * 1000) #for i in range(10): # print "%f" % fpgaOutput[i], xdnn_io.printClassification(softmaxOut, args) print "\nSuccess!\n" xdnn.closeHandle()
def main(): args = xdnn_io.processCommandLine() # processCommandLine() startTime = timeit.default_timer() ret = xdnn.createHandle(args['xclbin'], "kernelSxdnn_0", args['xlnxlib']) # ret = xdnn.createHandle(g_xclbin, "kernelSxdnn_0", g_xdnnLib) if ret != 0: sys.exit(1) elapsedTime = timeit.default_timer() - startTime print "\nAfter createHandle (%f ms):" % (elapsedTime * 1000) startTime = timeit.default_timer() # TODO dict of tuples instead? fpgaInputs = {} fpgaOutputs = {} weightsBlobs = {} fcWeights = {} fcBiases = {} batch_sizes = {} fpgaOutputSizes = {} PEs = {} netFiles = {} confNames = [] for netconf_args in args['jsoncfg']: confName = str(netconf_args['name']) confNames.append(confName) # make a tuple instead PE = [int(x) for x in netconf_args['PE'].split()] # if cuMask in cuMaskList: # raise Exception('cuMasks are non-disjoint') datadir = str(netconf_args['datadir']) fpgaoutsz = int(netconf_args['fpgaoutsz']) netfile = str(netconf_args['netcfg']) PEs[confName] = PE (weightsBlobs[confName], fcWeights[confName], fcBiases[confName]) = xdnn_io.loadWeights(netconf_args) fpgaOutputSizes[confName] = fpgaoutsz (fpgaInputs[confName], batch_sz) = xdnn_io.prepareInput(netconf_args, PE) batch_sizes[confName] = batch_sz fpgaOutputs[confName] = xdnn_io.prepareOutput( int(netconf_args['fpgaoutsz']), batch_sz) netFiles[confName] = netfile elapsedTime = timeit.default_timer() - startTime print "\nAfter init (%f ms):" % (elapsedTime * 1000) startTime = timeit.default_timer() for netconf_args in args['jsoncfg']: confName = str(netconf_args['name']) xdnn.exec_async(netFiles[confName], weightsBlobs[confName], fpgaInputs[confName], fpgaOutputs[confName], int(batch_sizes[confName]), netconf_args['quantizecfg'], netconf_args['scaleB'], PEs[confName]) elapsedTime = timeit.default_timer() - startTime print "\nAfter Execonly (%f ms):" % (elapsedTime * 1000) startTime = timeit.default_timer() for confName in confNames: xdnn.get_result(PEs[confName]) elapsedTime = timeit.default_timer() - startTime print "\nAfter wait (%f ms):" % (elapsedTime * 1000) startTime = timeit.default_timer() for netconf_args in args['jsoncfg']: confName = str(netconf_args['name']) fcOut = xdnn.computeFC(fcWeights[confName], fcBiases[confName], fpgaOutputs[confName], batch_sizes[confName], netconf_args['outsz'], netconf_args['fpgaoutsz'], netconf_args['useblas']) elapsedTime = timeit.default_timer() - startTime print "\nAfter FC (%f ms):" % (elapsedTime * 1000) startTime = timeit.default_timer() softmaxOut = xdnn.computeSoftmax(fcOut, batch_sizes[confName]) elapsedTime = timeit.default_timer() - startTime print "\nAfter Softmax (%f ms):" % (elapsedTime * 1000) xdnn_io.printClassification(softmaxOut, netconf_args) print "\nSuccess!\n" xdnn.closeHandle()
def main(argv=None): args = xdnn_io.processCommandLine(argv) startTime = timeit.default_timer() ret = xdnn.createHandle(args['xclbin'], "kernelSxdnn_0", args['xlnxlib']) if ret != 0: sys.exit(1) elapsedTime = timeit.default_timer() - startTime print "\nTime to createHandle (%f ms):" % (elapsedTime * 1000) # we do not need other args keys except 'jsoncfg' args = args['jsoncfg'] netCfgs = defaultdict(dict) confNames = [] startTime = timeit.default_timer() for streamId, netCfg_args in enumerate(args): confName = str(netCfg_args['name']) confNames += [confName] netCfg_args['netcfg'] = './data/{}_{}.cmd'.format( netCfg_args['net'], netCfg_args['dsp']) netCfgs[confName]['streamId'] = streamId netCfgs[confName]['args'] = netCfg_args (netCfgs[confName]['weightsBlobs'], netCfgs[confName]['fcWeights'], netCfgs[confName]['fcBiases']) = xdnn_io.loadWeights(netCfg_args) netCfgs[confName]['batch_sz'] = 1 netCfgs[confName]['fpgaOutputs'] = xdnn_io.prepareOutput( netCfg_args["fpgaoutsz"], netCfgs[confName]['batch_sz']) elapsedTime = timeit.default_timer() - startTime print "\nTime to init (%f ms):" % (elapsedTime * 1000) ## run YOLO confName = 'yolo' netCfg = netCfgs[confName] startTime = timeit.default_timer() (netCfg['fpgaInputs'], netCfg['batch_sz'], netCfg['shapes']) = xdnn_io.prepareInput(netCfg['args'], netCfg['args']['PE']) elapsedTime = timeit.default_timer() - startTime print "\nTime to transfer input image to FPGA (%f ms):" % (elapsedTime * 1000) startTime = timeit.default_timer() xdnn.exec_async(netCfg['args']['netcfg'], netCfg['weightsBlobs'], netCfg['fpgaInputs'], netCfg['fpgaOutputs'], netCfg['batch_sz'], netCfg['args']['quantizecfg'], netCfg['args']['scaleB'], netCfg['args']['PE'], netCfg['streamId']) elapsedTime = timeit.default_timer() - startTime print "\nTime to execute Yolo on FPGA (%f ms):" % (elapsedTime * 1000) startTime = timeit.default_timer() xdnn.get_result(netCfg['args']['PE'], netCfg['streamId']) elapsedTime = timeit.default_timer() - startTime print "\nTime to retrieve yolo outputs from FPGA (%f ms):" % (elapsedTime * 1000) startTime = timeit.default_timer() out_h = \ out_w = netCfg['args']['in_shape'][1] / 32 anchor_boxes = 5 objectness = 1 coordinates = 4 classes = 80 out_c = objectness + coordinates + classes # Reshape the fpgaOutputs into a 4D volume yolo_outputs = netCfg['fpgaOutputs'].reshape(anchor_boxes, out_c, out_h, out_w) # Apply sigmoid to 1st, 2nd, 4th channel for all anchor boxes yolo_outputs[:, 0:2, :, :] = sigmoid( yolo_outputs[:, 0:2, :, :]) # (X,Y) Predictions yolo_outputs[:, 4, :, :] = sigmoid( yolo_outputs[:, 4, :, :]) # Objectness / Box Confidence # Apply softmax on the class scores foreach anchor box for box in range(anchor_boxes): yolo_outputs[box, 5:, :, :] = softmax(yolo_outputs[box, 5:, :, :]) # Perform Non-Max Suppression # Non-Max Suppression filters out detections with a score lesser than 0.24 # Additionally if there are two predections with an overlap > 30%, the prediction with the lower score will be filtered scorethresh = 0.24 iouthresh = 0.3 bboxes = nms.do_baseline_nms(yolo_outputs.flat, netCfg['shapes'][0][1], netCfg['shapes'][0][0], netCfg['args']['in_shape'][2], netCfg['args']['in_shape'][1], out_w, out_h, anchor_boxes, classes, scorethresh, iouthresh) with open(netCfg['args']['labels']) as f: namez = f.readlines() names = [x.strip() for x in namez] # Lets print the detections our model made for j in range(len(bboxes)): print("Obj %d: %s" % (j, names[bboxes[j]['classid']])) print("\t score = %f" % (bboxes[j]['prob'])) print("\t (xlo,ylo) = (%d,%d)" % (bboxes[j]['ll']['x'], bboxes[j]['ll']['y'])) print("\t (xhi,yhi) = (%d,%d)" % (bboxes[j]['ur']['x'], bboxes[j]['ur']['y'])) elapsedTime = timeit.default_timer() - startTime print "\nTime to execute on CPU (%f ms):" % (elapsedTime * 1000) startTime = timeit.default_timer() img = cv2.imread(netCfg['args']['images'][0]) #img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # YOLO was trained with RGB, not BGR like Caffe # choose one of the bounding boxes obj_idx = 0 # specify a margin added to the selected bounding box margin = 10 H_slice = slice(max(0, bboxes[obj_idx]['ur']['y'] - margin), min(img.shape[0], bboxes[obj_idx]['ll']['y'] + margin)) W_slice = slice(max(0, bboxes[obj_idx]['ll']['x'] - margin), min(img.shape[1], bboxes[obj_idx]['ur']['x'] + margin)) img = img[H_slice, W_slice, :] print('pass obj {}: {} with size {} to googlenet'.format( obj_idx, names[bboxes[obj_idx]['classid']], img.shape)) cv2.imwrite('cropped_yolo_output.jpg', img) ''' if img.shape[-1] == 1 or img.shape[-1] == 3: # [H, W, C] old_dims = np.array(img.shape[:2], dtype=float) else: # [C, H, W] old_dims = np.array(img.shape[1:], dtype=float) ''' ## run GOOGLENET confName = 'googlenet' netCfg = netCfgs[confName] ''' new_dims = netCfg['args']['in_shape'] if new_dims[-1] == 1 or new_dims[-1] == 3: # [H, W, C] new_dims = np.array(new_dims[:2], dtype=int) else: # [C, H, W] new_dims = np.array(new_dims[1:], dtype=int) scale_dims = new_dims.copy() min_scale_idx = np.argmin(old_dims/new_dims) if min_scale_idx == 0: scale_dims[1] = scale_dims[0] * old_dims[1] / old_dims[0] else: scale_dims[0] = scale_dims[1] * old_dims[0] / old_dims[1] scale_dims = scale_dims.astype(int) # transform input image to match googlenet # scale the image print('scale image to {}'.format(scale_dims)) img = resize_image(img, list(scale_dims)) cv2.imwrite('rescaled_scaled.jpg', img) # crop the image crop_idxs = [np.arange(new_dims[i]) + int((scale_dims[i]-new_dims[i])/2) for i in range(2)] if img.shape[-1] == 1 or img.shape[-1] == 3: # [H, W, C] img = img[crop_idxs[0].reshape(-1,1), crop_idxs[1], :] else: # [C, H, W] img = img[:, crop_idxs[0].reshape(-1,1), crop_idxs[1]] print('crop image to {}'.format(img.shape)) cv2.imwrite('rescaled_cropped.jpg', img) #img = np.transpose(img, (2, 0, 1)) #cv2.imwrite('rescaled_transposed.jpg', img) ''' netCfg['args']['images'] = [img] elapsedTime = timeit.default_timer() - startTime print "\nTime to prepare googlenet image on CPU (%f ms):" % (elapsedTime * 1000) startTime = timeit.default_timer() (netCfg['fpgaInputs'], netCfg['batch_sz'], netCfg['shapes']) = xdnn_io.prepareInput(netCfg['args'], netCfg['args']['PE']) elapsedTime = timeit.default_timer() - startTime print "\nTime to transfer input image to FPGA (%f ms):" % (elapsedTime * 1000) startTime = timeit.default_timer() xdnn.exec_async(netCfg['args']['netcfg'], netCfg['weightsBlobs'], netCfg['fpgaInputs'], netCfg['fpgaOutputs'], netCfg['batch_sz'], netCfg['args']['quantizecfg'], netCfg['args']['scaleB'], netCfg['args']['PE'], netCfg['streamId']) elapsedTime = timeit.default_timer() - startTime print "\nTime to execute googlenet on FPGA (%f ms):" % (elapsedTime * 1000) startTime = timeit.default_timer() xdnn.get_result(netCfg['args']['PE'], netCfg['streamId']) elapsedTime = timeit.default_timer() - startTime print "\nTime to retrieve googlenet outputs from FPGA (%f ms):" % ( elapsedTime * 1000) startTime = timeit.default_timer() fcOut = np.empty((netCfg['batch_sz'] * netCfg['args']['outsz']), dtype=np.float32, order='C') xdnn.computeFC(netCfg['fcWeights'], netCfg['fcBiases'], netCfg['fpgaOutputs'], netCfg['batch_sz'], netCfg['args']['outsz'], netCfg['args']['fpgaoutsz'], fcOut) elapsedTime = timeit.default_timer() - startTime print "\nTime to run FC layers on CPU (%f ms):" % (elapsedTime * 1000) startTime = timeit.default_timer() softmaxOut = xdnn.computeSoftmax(fcOut, netCfg['batch_sz']) elapsedTime = timeit.default_timer() - startTime print "\nTime to run Softmax on CPU (%f ms):" % (elapsedTime * 1000) xdnn_io.printClassification(softmaxOut, netCfg['args']) print "\nSuccess!\n" xdnn.closeHandle()