示例#1
0
def plot_all(source, seperate=True):
    res = None
    if isinstance(source, xen.ScenarioSet):
        for scen in source.scenario_list:
            res = xen_r.ResultObj(source.set_name, scen.get_scen_id(), scen.get_result_id())
            plot_all_merge(res)
    elif isinstance(source, xen.Scenario):
        res = xen_r.ResultObj(source.owner_set_name, source.get_scen_id(), source.get_result_id())
    elif isinstance(source, xen_r.ResultObj):
        res = source
    else:
        raise Exception('unknown source')

    if seperate:
        plot_all_seperate(res)
    else:
        plot_all_merge(res)
示例#2
0
def equity(model,
           scenario_num=1000,
           maxyear=3,
           moment_match=False,
           frequency=xen.TimeGridFrequency.Day):
    if not isinstance(model, xen.Eq1FModel):
        raise Exception('Eq1FModel Type is needed')

    scenSetID = 'test_set'
    scenID = 'equity_test_scen'
    resultID = 'equity_test_result'

    scenSet = xen.ScenarioSet(scenSetID)
    scen = xen.Scenario(scenID, resultID)

    scen.general.maxyear = maxyear
    scen.general.scenario_num = scenario_num
    scen.general.moment_match = moment_match
    scen.general.frequency = frequency

    # setting additional calculation for martinagle test
    model.clear_calc()
    calc_randomZ = xen_c.RandomZ()
    model.add_calc(calc_randomZ)
    calc_uncon_expectation = xen_c.UnconditionalExpectation()
    model.add_calc(calc_uncon_expectation)

    scen.add_model(model)
    scenSet.add_scenario(scen)

    scenSet.generate()

    res = xen_r.ResultObj(scenSetID, scenID, resultID)

    equity = res.get_resultModel(model=model)
    equity_uncon_expectation = res.get_resultModel(model=model,
                                                   calc=calc_uncon_expectation)

    rnd_z = res.get_resultModel(model=model, calc=calc_randomZ)

    plt.figure(1)
    plt.plot(res.timegrid.data['T'], equity.average(), label='equity_aver')
    plt.plot(res.timegrid.data['T'],
             equity_uncon_expectation.data[0],
             label='equity_analytic')
    plt.title('equity_aver vs equity_analytic')
    plt.xlabel('time (year)')
    plt.ylabel('value')
    plt.legend()

    plt.figure(2)
    plt.title('rand_z')
    plt.plot(rnd_z.average())
    plt.show()
示例#3
0
# scenario set
set_name = 'set1'
scenSet = xen.ScenarioSet(set_name=set_name)

# scenario
scen_id = 'scen1'
result_id = 'res1'
scen1 = xen.Scenario(scen_id=scen_id, result_id=result_id)

# generation setting
scen1.general.scenario_num = 100
scen1.general.maxyear = 10

# model add
scen1.add_model(xen_s.gbm('kospi200'))
scen1.add_model(xen_s.gbmconst('kospi'))
scen1.add_model(xen_s.hw1f('irskrw'))

scenSet.add_scenario(scen1)
scenSet.generate()

# get result from current repository
res = xen_r.ResultObj(set_name, scen_id, result_id)

# export csv
for i, model in enumerate(scen1.models):
    filename = model + '_' + str(i) + '.csv'
    res.get_resultModel_by_index(i).export_csv(filename)

# export npz
res.export_npz(scenSet.set_name + '.npz')
示例#4
0
# coding=euc-kr
import xenarix as xen
import xenarix.results as results

repository_dir = 'C:\\Users\\09928829\\Source\\Workspaces\\InsuranceHedgeProject\\InsruranceHedge_sln\\Project\\Scenario\\xenarixPy\\test_repository'
xen.set_repository(repository_dir)

set_name = 'setname_1'
scen_id = 'testallmodel_1'
result_id = 'testresult_1'

result = results.ResultObj(set_name, scen_id, result_id)

print(result.res_models[0].data)

示例#5
0
# coding=utf-8
import xenarix as xen
import xenarix.results as xen_r

xen.set_repository('c:\\xenarix')
res = xen_r.ResultObj('set1','SCEN1','RES1')

timeseries = []

ts_result_model = xen_r.TimeSeriesResultModel(timeseries=timeseries, timegrid=res.timegrid)

for t_row in res.timegrid:
    ts_result_model.interpolated_value(t_row)


示例#6
0
def shortrate(model,
              scenario_num=1000,
              maxyear=3,
              moment_match=False,
              frequency=xen.TimeGridFrequency.Day):
    if not isinstance(model, xen.Ir1FModel):
        raise Exception('Ir1FModel Type is needed')

    scenSetID = 'test_shortratecalc_set'
    scenID = 'test_shortratecalc_scen'
    resultID = 'test_shortratecalc_result'

    scenSet = xen.ScenarioSet(scenSetID)
    scen = xen.Scenario(scenID, resultID)

    scen.general.maxyear = maxyear
    scen.general.scenario_num = scenario_num
    scen.general.moment_match = moment_match
    scen.general.frequency = frequency

    model.clear_calc()
    # spot ----------------------------------------------
    calc_spot3M = xen_c.Spot('test_spot3m')
    calc_spot3M.maturity = '3M'
    model.add_calc(calc_spot3M)

    calc_spot6M = xen_c.Spot('test_spot6m')
    calc_spot6M.maturity = '6M'
    model.add_calc(calc_spot6M)

    calc_spot24M = xen_c.Spot('test_spot24m')
    calc_spot24M.maturity = '24M'
    model.add_calc(calc_spot24M)

    # forward ----------------------------------------------
    calc_forward_1M = xen_c.Forward('test_forward1m')
    calc_forward_1M.maturity = '1M'
    model.add_calc(calc_forward_1M)

    calc_forward_1Y_1M = xen_c.Forward('test_forward1y_1m')
    calc_forward_1Y_1M.forward_peoriod = '1Y'
    calc_forward_1Y_1M.maturity = '1M'
    model.add_calc(calc_forward_1Y_1M)

    calc_forward_1Y = xen_c.Forward('test_forward1y')
    calc_forward_1Y.maturity = '1Y'
    model.add_calc(calc_forward_1Y)

    calc_forward_1Y_1Y = xen_c.Forward('test_forward1y_1y')
    calc_forward_1Y_1Y.forward_peoriod = '1Y'
    calc_forward_1Y_1Y.maturity = '1Y'
    model.add_calc(calc_forward_1Y_1Y)

    # calc_cmt = xen_c.CMT('test_cmt')
    # model.add_calc(calc_cmt)
    #
    # calc_zerobond = xen_c.ZeroBond('test_zb')
    # model.add_calc(calc_zerobond)

    scen.add_model(model)
    scenSet.add_scenario(scen)

    scenSet.generate()

    res = xen_r.ResultObj(scenSetID, scenID, resultID)

    shortrate = res.get_resultModel(model=model)
    rm_calc_spot3M = res.get_resultModel(model=model, calc=calc_spot3M)
    rm_calc_spot6M = res.get_resultModel(model=model, calc=calc_spot6M)
    rm_calc_spot24M = res.get_resultModel(model=model, calc=calc_spot24M)

    # rm_calc_ = res.get_resultModel(model=model, calc=calc_zerobond)
    # rm_calc_cmt = res.get_resultModel(model=model, calc=calc_cmt)
    # rm_calc_zerobond = res.get_resultModel(model=model, calc=calc_zerobond)

    # plt.plot(shortrate_aver)
    # plt.plot(shortrate_uncon_expectation[0])
    plt.figure(1)
    plt.plot(res.timegrid.data['T'], shortrate.average(), label='shor_aver')
    plt.plot(res.timegrid.data['T'], rm_calc_spot3M.average(), label='spot_3m')
    plt.plot(res.timegrid.data['T'], rm_calc_spot6M.average(), label='spot_6m')
    plt.plot(res.timegrid.data['T'],
             rm_calc_spot24M.average(),
             label='spot_24m')
    plt.title('short_aver vs cmt_aver vs zerobond_aver')
    plt.xlabel('time (year)')
    plt.ylabel('rate (%)')

    plt.show()
示例#7
0
def mc_shortrate(model,
                 scenario_num=200,
                 maxyear=3,
                 moment_match=False,
                 frequency=xen.TimeGridFrequency.Day):
    if not isinstance(model, xen.Ir1FModel):
        raise Exception('Ir1FModel Type is needed')

    scenSetID = 'test_set'
    scenID = 'test_scen'
    resultID = 'test_result_' + model.model_name

    scenSet = xen.ScenarioSet(scenSetID)
    scen = xen.Scenario(scenID, resultID)

    scen.general.maxyear = maxyear
    scen.general.scenario_num = scenario_num
    scen.general.moment_match = moment_match
    scen.general.frequency = frequency

    # setting additional calculation for martinagle test
    model.clear_calc()
    # calc_randomZ = xen_c.RandomZ()
    # model.add_calc(calc_randomZ)
    calc_uncon_expectation = xen_c.UnconditionalExpectation()
    model.add_calc(calc_uncon_expectation)
    calc_mrk_discount = xen_c.FittingDiscount()
    model.add_calc(calc_mrk_discount)
    calc_model_discount = xen_c.ModelDiscount()
    model.add_calc(calc_model_discount)

    scen.add_model(model)
    scenSet.add_scenario(scen)

    scenSet.generate()

    res = xen_r.ResultObj(scenSetID, scenID, resultID)

    shortrate = res.get_resultModel(model=model)
    shortrate_uncon_expectation = res.get_resultModel(
        model=model, calc=calc_uncon_expectation)
    mrk_discount = res.get_resultModel(model=model, calc=calc_mrk_discount)
    model_discount = res.get_resultModel(model=model, calc=calc_model_discount)

    #rnd_z = res.get_resultModel(model=model, calc=calc_randomZ)

    print(mrk_discount.data[0])

    # result_list['BASE_FITTINGDISCOUNT'].load(1, 1)
    #
    # shortrate_aver = result_list['BASE_nan'].averave()
    # shortrate = result_list['BASE_nan'].load()
    # shortrate_uncon_expectation = result_list['BASE_UNCONDITIONALEXPECTATION'].load()
    # mrk_discount = result_list['BASE_FITTINGDISCOUNT'].load()
    # discount = result_list['BASE_MODEL_DISCOUNTBOND'].averave()
    # mrk_spot = result_list['BASE_FITTINGSPOT'].averave()
    # mrk_forward = result_list['BASE_FITTINGFORWARD'].averave()
    # rnd_z = result_list['BASE_RANDOMZ'].averave()

    # print(shortrate_aver)
    # print(shortrate[0])
    # print(shortrate[1])

    # plt.plot(discount)
    # plt.plot(mrk_discount)
    # plt.plot(mrk_spot)

    i = 0

    # for z, short_u_exp, short, spot, forward, mrk_disc, disc in zip(rnd_z, shortrate_uncon_expectation[0],
    #                                                                 shortrate_aver, mrk_spot, mrk_forward,
    #                                                                 mrk_discount[0], discount):
    #     print (
    #     str(i) + ' : ' + str(z) + ' , ' + str(short_u_exp) + ' , ' + str(short) + ' , ' + str(spot) + ' , ' + str(
    #         forward) + ' , ' + str(mrk_disc) + ' , ' + str(disc) + ' , ' + str(mrk_disc - disc))
    #     i += 1

    # plt.plot(shortrate_aver)
    # plt.plot(shortrate_uncon_expectation[0])
    plt.figure(1)
    plt.plot(res.timegrid.data['T'], shortrate.average(), label='shor_aver')
    plt.plot(res.timegrid.data['T'],
             shortrate_uncon_expectation.data[0],
             label='short_analytic')
    plt.title('short_aver vs short_analytic')
    plt.xlabel('time (year)')
    plt.ylabel('rate (%)')
    plt.legend()

    plt.figure(2)
    plt.plot(res.timegrid.data['T'],
             shortrate.average() - shortrate_uncon_expectation.data[0],
             label='diff')
    plt.title('short_aver - short_analytic')
    plt.xlabel('time (year)')
    plt.ylabel('rate (%)')
    plt.legend()

    # plt.plot(mrk_forward)
    # pos = 360
    # print(mrk_discount[0][pos])
    # print(discount[pos])
    #
    # print(mrk_discount[0][pos] - discount[pos])
    #
    # print('disc diff ' + str(pos) + ' : ' + str(mrk_discount[0][pos] - discount[pos]))

    plt.figure(3)
    plt.title('discount - mrk_discount')
    # plt.plot(mrk_discount[0])
    # plt.plot(discount)

    plt.plot(mrk_discount.data[0] - model_discount.average())

    # plt.figure(4)
    # plt.title('rand_z')
    # plt.plot(rnd_z.average())
    #print('aver Z : ' + rnd_z))
    plt.show()
示例#8
0
def rw_shortrate(model,
                 scenario_num=200,
                 maxyear=3,
                 moment_match=False,
                 frequency=xen.TimeGridFrequency.Day):
    if not isinstance(model, xen.Ir1FModel):
        raise Exception('Ir1FModel Type is needed')

    scenSetID = 'test_set'
    scenID = 'test_scen'
    resultID = 'test_result_' + model.model_name

    scenSet = xen.ScenarioSet(scenSetID)
    scen = xen.Scenario(scenID, resultID)

    scen.general.maxyear = maxyear
    scen.general.scenario_num = scenario_num
    scen.general.moment_match = moment_match
    scen.general.frequency = frequency

    # setting additional calculation for martinagle test
    model.clear_calc()
    # calc_randomZ = xen_c.RandomZ()
    # model.add_calc(calc_randomZ)
    calc_uncon_expectation = xen_c.UnconditionalExpectation()
    model.add_calc(calc_uncon_expectation)

    scen.add_model(model)
    scenSet.add_scenario(scen)

    scenSet.generate()

    res = xen_r.ResultObj(scenSetID, scenID, resultID)

    shortrate = res.get_resultModel(model=model)
    shortrate_uncon_expectation = res.get_resultModel(
        model=model, calc=calc_uncon_expectation)

    #rnd_z = res.get_resultModel(model=model, calc=calc_randomZ)

    i = 0

    plt.figure(1)
    plt.plot(res.timegrid.data['T'], shortrate.average(), label='shor_aver')
    plt.plot(res.timegrid.data['T'],
             shortrate_uncon_expectation.data[0],
             label='short_analytic')
    plt.title('short_aver vs short_analytic')
    plt.xlabel('time (year)')
    plt.ylabel('rate (%)')
    plt.legend()

    plt.figure(2)
    plt.plot(res.timegrid.data['T'],
             shortrate.average() - shortrate_uncon_expectation.data[0],
             label='diff')
    plt.title('short_aver - short_analytic')
    plt.xlabel('time (year)')
    plt.ylabel('rate (%)')
    plt.legend()

    # plt.figure(3)
    # plt.title('rand_z')
    # plt.plot(rnd_z.average())
    #print('aver Z : ' + rnd_z))
    plt.show()
import xenarix as xen
import xenarix.results as xen_r

#import model_generate as mg

scenSetID = 'set1'
scenID = 'scen1'
resultID = 'res1'

# mg.generate(scenSetID=scenSetID,
#             scenID=scenID,
#             resultID=resultID)

result = xen_r.ResultObj(scenSetID, scenID, resultID)

multipath = result.get_multipath(scen_count=0)
modelpath = result.get_modelpath(model_count=0)

calculated_result = []

print(result.names)

# print (multipath)
# print (modelpath)

# for t in result.timegrid:
# print(multipath[:,t[0]])
# calculated_result.append([])

# for t in result.timegrid:
#     print(modelpath[:, t[0]])