示例#1
0
def test_tensor_converter_3():
    converter = TensorConverter()
    np_ = np.asarray([[1, 2, 3], [4, 5, 6]])
    tensor_ = torch.from_numpy(np_)

    y, y_ = converter.output_proc(tensor_, None, training=True)
    assert y_ is None
    assert isinstance(y, torch.Tensor)
    assert y.shape == (2, 3)
    assert torch.equal(y, tensor_)

    y, y_ = converter.output_proc(tensor_, tensor_, training=True)
    assert isinstance(y, torch.Tensor)
    assert isinstance(y_, torch.Tensor)
    assert y.equal(y_)
    assert y.shape == (2, 3)
    assert torch.equal(y, tensor_)

    y, _ = converter.output_proc((tensor_, ), None, training=True)
    assert isinstance(y, tuple)
    assert isinstance(y[0], torch.Tensor)
    assert torch.equal(y[0], tensor_)

    y, y_ = converter.output_proc(tensor_, tensor_, training=False)
    assert isinstance(y, np.ndarray)
    assert isinstance(y_, np.ndarray)
    assert np.all(y == y_)
    assert y.shape == (2, 3)
    assert np.all(y == tensor_.numpy())

    y, _ = converter.output_proc((tensor_, ), None, training=False)
    assert isinstance(y, tuple)
    assert isinstance(y[0], np.ndarray)
    assert np.all(y[0] == tensor_.numpy())
示例#2
0
def test_tensor_converter_3():
    np_ = np.asarray([[1, 2, 3], [4, 5, 6]])
    tensor_ = torch.from_numpy(np_)

    converter = TensorConverter()
    y, y_ = converter.output_proc(tensor_, None, is_training=True)
    assert y_ is None
    assert isinstance(y, torch.Tensor)
    assert y.shape == (2, 3)
    assert torch.equal(y, tensor_)

    y, y_ = converter.output_proc(tensor_, tensor_, is_training=True)
    assert isinstance(y, torch.Tensor)
    assert isinstance(y_, torch.Tensor)
    assert y.equal(y_)
    assert y.shape == (2, 3)
    assert torch.equal(y, tensor_)

    y, _ = converter.output_proc((tensor_, ), None, is_training=True)
    assert isinstance(y, tuple)
    assert isinstance(y[0], torch.Tensor)
    assert torch.equal(y[0], tensor_)

    y, y_ = converter.output_proc(tensor_, tensor_, is_training=False)
    assert isinstance(y, np.ndarray)
    assert isinstance(y_, np.ndarray)
    assert np.all(y == y_)
    assert y.shape == (2, 3)
    assert np.all(y == tensor_.numpy())

    y, _ = converter.output_proc((tensor_, ), None, is_training=False)
    assert isinstance(y, tuple)
    assert isinstance(y[0], np.ndarray)
    assert np.all(y[0] == tensor_.numpy())

    converter = TensorConverter(argmax=True)
    y, y_ = converter.output_proc(tensor_, tensor_, is_training=False)
    assert isinstance(y, np.ndarray)
    assert isinstance(y_, np.ndarray)
    assert y.shape == (2, )
    assert y_.shape == (2, 3)
    assert np.all(y == np.argmax(np_, 1))

    y, y_ = converter.output_proc((tensor_, tensor_), None, is_training=False)
    assert isinstance(y, tuple)
    assert y_ is None
    assert y[0].shape == (2, )
    assert y[0].shape == y[1].shape
    assert np.all(y[0] == np.argmax(np_, 1))

    converter = TensorConverter(probability=True)
    y, y_ = converter.output_proc(tensor_, tensor_, is_training=False)
    assert isinstance(y, np.ndarray)
    assert isinstance(y_, np.ndarray)
    assert y.shape == (2, 3)
    assert y_.shape == (2, 3)
    assert np.all(y == softmax(np_, 1))

    y, y_ = converter.output_proc((tensor_, tensor_), None, is_training=False)
    assert isinstance(y, tuple)
    assert y_ is None
    assert y[0].shape == (2, 3)
    assert y[0].shape == y[1].shape
    assert np.all(y[0] == softmax(np_, 1))