def event(self, evt, env): """The event() function is called for every L1Accept transition. It outputs the detector image associated with the event @p evt to the file system. @param evt Event data object, a configure object @param env Environment object """ super(mod_dump_bitmap, self).event(evt, env) if (evt.get('skip_event')): return # Where the sample-detector distance is not available, set it to # zero. distance = cspad_tbx.env_distance(self.address, env, self._detz_offset) if distance is None: distance = 0 # See r17537 of mod_average.py. device = cspad_tbx.address_split(self.address)[2] if device == 'Cspad': pixel_size = cspad_tbx.pixel_size saturated_value = cspad_tbx.cspad_saturated_value elif device == 'marccd': pixel_size = 0.079346 saturated_value = 2**16 - 1 from iotbx.detectors import FlexImage_d as FlexImage vendortype = device saturation = 65535 flex_img = FlexImage(rawdata=self.cspad_img, binning=self._binning, vendortype=vendortype, brightness=self._brightness, saturation=saturated_value) flex_img.setWindow(0, 0, 1) flex_img.adjust(color_scheme=self._color_scheme) flex_img.prep_string() import Image # XXX is size//self._binning safe here? pil_img = Image.fromstring('RGB', (flex_img.size2() // self._binning, flex_img.size1() // self._binning), flex_img.export_string) # The output path should not contain any funny characters which may # not work in all environments. This constructs a sequence number a # la evt_seqno() from the dictionary's timestamp. t = self.timestamp s = t[0:4] + t[5:7] + t[8:10] + t[11:13] + t[14:16] + t[17:19] + t[ 20:23] path = os.path.join(self._dirname, self._basename + s + '.' + self._ext) self._logger.info("Exporting %s" % path) tmp_stream = open(path, 'wb') pil_img.save(tmp_stream, format=self._format) tmp_stream.close()
def event(self, evt, env): """The event() function is called for every L1Accept transition. @param evt Event data object, a configure object @param env Environment object """ super(mod_radial_average, self).event(evt, env) if (evt.get("skip_event")): return # This module only applies to detectors for which a distance is # available. distance = cspad_tbx.env_distance(self.address, env, self._detz_offset) if distance is None: self.nfail += 1 self.logger.warning("event(): no distance, shot skipped") evt.put(skip_event_flag(), "skip_event") return # See r17537 of mod_average.py. device = cspad_tbx.address_split(self.address)[2] if device == 'Cspad': pixel_size = cspad_tbx.pixel_size saturated_value = cspad_tbx.cspad_saturated_value elif device == 'marccd': pixel_size = 0.079346 saturated_value = 2**16 - 1 d = cspad_tbx.dpack( active_areas=self.active_areas, address=self.address, beam_center_x=pixel_size * self.beam_center[0], beam_center_y=pixel_size * self.beam_center[1], data=self.cspad_img.iround(), # XXX ouch! distance=distance, pixel_size=pixel_size, saturated_value=saturated_value, timestamp=self.timestamp, wavelength=self.wavelength, xtal_target=self.m_xtal_target) from xfel.command_line.radial_average import run args = [ "file_path=XTC stream", "xfel_target=%s"%self.m_xtal_target, "verbose=False" ] t = self.timestamp s = t[0:4] + t[5:7] + t[8:10] + t[11:13] + t[14:16] + t[17:19] + t[20:23] if self._dirname is not None: dest_path = os.path.join(self._dirname, self._basename + s + ".txt") args.append("output_file=%s"%dest_path) self.logger.info("Calculating radial average for image %s"%s) xvals, results = run(args, d) evt.put(xvals, "cctbx.xfel.radial_average.xvals") evt.put(results, "cctbx.xfel.radial_average.results")
def event(self, evt, env): """The event() function is called for every L1Accept transition. @param evt Event data object, a configure object @param env Environment object """ super(mod_image_dict, self).event(evt, env) if (evt.get("skip_event")): return # This module only applies to detectors for which a distance is # available. distance = cspad_tbx.env_distance(self.address, env, self._detz_offset) if distance is None: self.nfail += 1 self.logger.warning("event(): no distance, shot skipped") evt.put(skip_event_flag(), "skip_event") return device = cspad_tbx.address_split(self.address)[2] self.logger.info("Subprocess %02d: process image #%05d @ %s" % (env.subprocess(), self.nshots, self.timestamp)) # See r17537 of mod_average.py. if device == 'Cspad': pixel_size = cspad_tbx.pixel_size saturated_value = cspad_tbx.cspad_saturated_value elif device == 'Rayonix': pixel_size = rayonix_tbx.get_rayonix_pixel_size(self.bin_size) saturated_value = rayonix_tbx.rayonix_saturated_value elif device == 'marccd': pixel_size = evt.get("marccd_pixel_size") saturated_value = evt.get("marccd_saturated_value") if distance == 0: distance = evt.get("marccd_distance") d = cspad_tbx.dpack( active_areas=self.active_areas, address=self.address, beam_center_x=pixel_size * self.beam_center[0], beam_center_y=pixel_size * self.beam_center[1], data=self.cspad_img.iround(), # XXX ouch! distance=distance, pixel_size=pixel_size, saturated_value=saturated_value, timestamp=self.timestamp, wavelength=self.wavelength) evt.put(d, self.m_out_key) # Diagnostic message emitted only when all the processing is done. if (env.subprocess() >= 0): self.logger.info("Subprocess %02d: accepted #%05d @ %s" % (env.subprocess(), self.nshots, self.timestamp)) else: self.logger.info("Accepted #%05d @ %s" % (self.nshots, self.timestamp))
def event(self, evt, env): """The event() function is called for every L1Accept transition. It outputs the detector image associated with the event @p evt to the file system. @param evt Event data object, a configure object @param env Environment object """ super(mod_dump, self).event(evt, env) if (evt.get('skip_event')): return if self.cspad_img is None: print("No image to save for %s"%self.timestamp) return # Where the sample-detector distance is not available, set it to # zero. distance = cspad_tbx.env_distance(self.address, env, self._detz_offset) if distance is None: distance = 0 # See r17537 of mod_average.py. device = cspad_tbx.address_split(self.address)[2] if device == 'Cspad': pixel_size = cspad_tbx.pixel_size saturated_value = cspad_tbx.cspad_saturated_value output_filename = self._basename elif device == 'Rayonix': pixel_size = rayonix_tbx.get_rayonix_pixel_size(self.bin_size) saturated_value = rayonix_tbx.rayonix_saturated_value output_filename = self._basename elif device == 'marccd': if distance == 0: distance = evt.get('marccd_distance') pixel_size = 0.079346 saturated_value = 2**16 - 1 output_filename = self._basename + evt.get(str, 'mccd_name') + "_" d = cspad_tbx.dpack( active_areas=self.active_areas, address=self.address, beam_center_x=pixel_size * self.beam_center[0], beam_center_y=pixel_size * self.beam_center[1], data=self.cspad_img.iround(), # XXX ouch! distance=distance, pixel_size=pixel_size, saturated_value=saturated_value, timestamp=self.timestamp, wavelength=self.wavelength) if self._format == "pickle": cspad_tbx.dwritef(d, self._dirname, output_filename) elif self._format == "tiff": cspad_tbx.write_tiff(d, self._dirname, output_filename) output_filename = None
def event(self, evt, env): """The event() function is called for every L1Accept transition. It outputs the detector image associated with the event @p evt to the file system. @param evt Event data object, a configure object @param env Environment object """ super(mod_dump, self).event(evt, env) if (evt.get('skip_event')): return if self.cspad_img is None: print "No image to save for %s"%self.timestamp return # Where the sample-detector distance is not available, set it to # zero. distance = cspad_tbx.env_distance(self.address, env, self._detz_offset) if distance is None: distance = 0 # See r17537 of mod_average.py. device = cspad_tbx.address_split(self.address)[2] if device == 'Cspad': pixel_size = cspad_tbx.pixel_size saturated_value = cspad_tbx.cspad_saturated_value output_filename = self._basename elif device == 'Rayonix': pixel_size = rayonix_tbx.get_rayonix_pixel_size(self.bin_size) saturated_value = rayonix_tbx.rayonix_saturated_value output_filename = self._basename elif device == 'marccd': if distance == 0: distance = evt.get('marccd_distance') pixel_size = 0.079346 saturated_value = 2**16 - 1 output_filename = self._basename + evt.get(str, 'mccd_name') + "_" d = cspad_tbx.dpack( active_areas=self.active_areas, address=self.address, beam_center_x=pixel_size * self.beam_center[0], beam_center_y=pixel_size * self.beam_center[1], data=self.cspad_img.iround(), # XXX ouch! distance=distance, pixel_size=pixel_size, saturated_value=saturated_value, timestamp=self.timestamp, wavelength=self.wavelength) if self._format == "pickle": cspad_tbx.dwritef(d, self._dirname, output_filename) elif self._format == "tiff": cspad_tbx.write_tiff(d, self._dirname, output_filename) output_filename = None
def __init__(self, address, n_collate = None, n_update = 120, common_mode_correction = "none", wait=None, photon_counting=False, sigma_scaling=False, **kwds): """The mod_view class constructor XXX. @param address Full data source address of the DAQ device @param calib_dir Directory with calibration information @param common_mode_correction The type of common mode correction to apply @param dark_path Path to input average dark image @param dark_stddev Path to input standard deviation dark image, required if @p dark_path is given @param wait Minimum time (in seconds) to wait on the current image before moving on to the next @param n_collate Number of shots to average, or <= 0 to average all shots @param n_update Number of shots between updates """ super(mod_view, self).__init__( address=address, common_mode_correction=common_mode_correction, **kwds) self.detector = cspad_tbx.address_split(address)[0] self.nvalid = 0 self.ncollate = cspad_tbx.getOptInteger(n_collate) self.nupdate = cspad_tbx.getOptInteger(n_update) self.photon_counting = cspad_tbx.getOptBool(photon_counting) self.sigma_scaling = cspad_tbx.getOptBool(sigma_scaling) if (self.ncollate is None): self.ncollate = self.nupdate if (self.ncollate > self.nupdate): self.ncollate = self.nupdate self.logger.warning("n_collate capped to %d" % self.nupdate) linger = True # XXX Make configurable wait = cspad_tbx.getOptFloat(wait) # Create a managed FIFO queue shared between the viewer and the # current process. The current process will produce images, while # the viewer process will consume them. manager = multiprocessing.Manager() self._queue = manager.Queue() self._proc = multiprocessing.Process( target=_xray_frame_process, args=(self._queue, linger, wait)) self._proc.start() self.n_shots = 0
def __init__(self, address, n_collate=None, n_update=120, common_mode_correction="none", wait=None, photon_counting=False, sigma_scaling=False, **kwds): """The mod_view class constructor XXX. @param address Full data source address of the DAQ device @param calib_dir Directory with calibration information @param common_mode_correction The type of common mode correction to apply @param dark_path Path to input average dark image @param dark_stddev Path to input standard deviation dark image, required if @p dark_path is given @param wait Minimum time (in seconds) to wait on the current image before moving on to the next @param n_collate Number of shots to average, or <= 0 to average all shots @param n_update Number of shots between updates """ super(mod_view, self).__init__(address=address, common_mode_correction=common_mode_correction, **kwds) self.detector = cspad_tbx.address_split(address)[0] self.nvalid = 0 self.ncollate = cspad_tbx.getOptInteger(n_collate) self.nupdate = cspad_tbx.getOptInteger(n_update) self.photon_counting = cspad_tbx.getOptBool(photon_counting) self.sigma_scaling = cspad_tbx.getOptBool(sigma_scaling) if (self.ncollate is None): self.ncollate = self.nupdate if (self.ncollate > self.nupdate): self.ncollate = self.nupdate self.logger.warning("n_collate capped to %d" % self.nupdate) linger = True # XXX Make configurable wait = cspad_tbx.getOptFloat(wait) # Create a managed FIFO queue shared between the viewer and the # current process. The current process will produce images, while # the viewer process will consume them. manager = multiprocessing.Manager() self._queue = manager.Queue() self._proc = multiprocessing.Process(target=_xray_frame_process, args=(self._queue, linger, wait)) self._proc.start() self.n_shots = 0
def set_up_hitfinder(self): # See r17537 of mod_average.py. device = cspad_tbx.address_split(self.address)[2] if device == 'Cspad': img_dim = (1765, 1765) pixel_size = cspad_tbx.pixel_size elif device == 'marccd': img_dim = (4500, 4500) pixel_size = 0.079346 elif device == 'Rayonix': img_dim = rayonix_tbx.get_rayonix_detector_dimensions( self.bin_size) pixel_size = rayonix_tbx.get_rayonix_pixel_size(self.bin_size) else: raise RuntimeError("Unsupported device %s" % self.address) if self.beam_center is None: self.beam_center = [0, 0] self.hitfinder_d = cspad_tbx.dpack( active_areas=self.active_areas, beam_center_x=pixel_size * self.beam_center[0], beam_center_y=pixel_size * self.beam_center[1], data=flex.int(flex.grid(img_dim[0], img_dim[1]), 0), xtal_target=self.m_xtal_target) if device == 'Cspad': # Figure out which ASIC:s are on the central four sensors. This # only applies to the CSPAD. assert len(self.active_areas) % 4 == 0 distances = flex.double() for i in range(0, len(self.active_areas), 4): cenasic = ( (self.active_areas[i + 0] + self.active_areas[i + 2]) / 2, (self.active_areas[i + 1] + self.active_areas[i + 3]) / 2) distances.append( math.hypot(cenasic[0] - self.beam_center[0], cenasic[1] - self.beam_center[1])) orders = flex.sort_permutation(distances) # Use the central 8 ASIC:s (central 4 sensors). flags = flex.int(len(self.active_areas) // 4, 0) for i in range(8): flags[orders[i]] = 1 self.asic_filter = "distl.tile_flags=" + ",".join( ["%1d" % b for b in flags]) elif device == 'marccd': # There is only one active area for the MAR CCD, so use it. self.asic_filter = "distl.tile_flags=1" elif device == 'Rayonix': # There is only one active area for the Rayonix, so use it. self.asic_filter = "distl.tile_flags=1"
def set_up_hitfinder(self): # See r17537 of mod_average.py. device = cspad_tbx.address_split(self.address)[2] if device == 'Cspad': img_dim = (1765, 1765) pixel_size = cspad_tbx.pixel_size elif device == 'marccd': img_dim = (4500, 4500) pixel_size = 0.079346 elif device == 'Rayonix': img_dim = rayonix_tbx.get_rayonix_detector_dimensions(self.bin_size) pixel_size = rayonix_tbx.get_rayonix_pixel_size(self.bin_size) else: raise RuntimeError("Unsupported device %s" % self.address) if self.beam_center is None: self.beam_center = [0,0] self.hitfinder_d = cspad_tbx.dpack( active_areas=self.active_areas, beam_center_x=pixel_size * self.beam_center[0], beam_center_y=pixel_size * self.beam_center[1], data=flex.int(flex.grid(img_dim[0], img_dim[1]), 0), xtal_target=self.m_xtal_target) if device == 'Cspad': # Figure out which ASIC:s are on the central four sensors. This # only applies to the CSPAD. assert len(self.active_areas) % 4 == 0 distances = flex.double() for i in range(0, len(self.active_areas), 4): cenasic = ((self.active_areas[i + 0] + self.active_areas[i + 2]) / 2, (self.active_areas[i + 1] + self.active_areas[i + 3]) / 2) distances.append(math.hypot(cenasic[0] - self.beam_center[0], cenasic[1] - self.beam_center[1])) orders = flex.sort_permutation(distances) # Use the central 8 ASIC:s (central 4 sensors). flags = flex.int(len(self.active_areas) // 4, 0) for i in range(8): flags[orders[i]] = 1 self.asic_filter = "distl.tile_flags=" + ",".join( ["%1d" % b for b in flags]) elif device == 'marccd': # There is only one active area for the MAR CCD, so use it. self.asic_filter = "distl.tile_flags=1" elif device == 'Rayonix': # There is only one active area for the Rayonix, so use it. self.asic_filter = "distl.tile_flags=1"
def average(argv=None): if argv == None: argv = sys.argv[1:] try: from mpi4py import MPI except ImportError: raise Sorry("MPI not found") command_line = (libtbx.option_parser.option_parser( usage=""" %s [-p] -c config -x experiment -a address -r run -d detz_offset [-o outputdir] [-A averagepath] [-S stddevpath] [-M maxpath] [-n numevents] [-s skipnevents] [-v] [-m] [-b bin_size] [-X override_beam_x] [-Y override_beam_y] [-D xtc_dir] [-f] To write image pickles use -p, otherwise the program writes CSPAD CBFs. Writing CBFs requires the geometry to be already deployed. Examples: cxi.mpi_average -c cxi49812/average.cfg -x cxi49812 -a CxiDs1.0:Cspad.0 -r 25 -d 571 Use one process on the current node to process all the events from run 25 of experiment cxi49812, using a detz_offset of 571. mpirun -n 16 cxi.mpi_average -c cxi49812/average.cfg -x cxi49812 -a CxiDs1.0:Cspad.0 -r 25 -d 571 As above, using 16 cores on the current node. bsub -a mympi -n 100 -o average.out -q psanaq cxi.mpi_average -c cxi49812/average.cfg -x cxi49812 -a CxiDs1.0:Cspad.0 -r 25 -d 571 -o cxi49812 As above, using the psanaq and 100 cores, putting the log in average.out and the output images in the folder cxi49812. """ % libtbx.env.dispatcher_name) .option(None, "--as_pickle", "-p", action="store_true", default=False, dest="as_pickle", help="Write results as image pickle files instead of cbf files") .option(None, "--config", "-c", type="string", default=None, dest="config", metavar="PATH", help="psana config file") .option(None, "--experiment", "-x", type="string", default=None, dest="experiment", help="experiment name (eg cxi84914)") .option(None, "--run", "-r", type="int", default=None, dest="run", help="run number") .option(None, "--address", "-a", type="string", default="CxiDs2.0:Cspad.0", dest="address", help="detector address name (eg CxiDs2.0:Cspad.0)") .option(None, "--detz_offset", "-d", type="float", default=None, dest="detz_offset", help="offset (in mm) from sample interaction region to back of CSPAD detector rail (CXI), or detector distance (XPP)") .option(None, "--outputdir", "-o", type="string", default=".", dest="outputdir", metavar="PATH", help="Optional path to output directory for output files") .option(None, "--averagebase", "-A", type="string", default="{experiment!l}_avg-r{run:04d}", dest="averagepath", metavar="PATH", help="Path to output average image without extension. String substitution allowed") .option(None, "--stddevbase", "-S", type="string", default="{experiment!l}_stddev-r{run:04d}", dest="stddevpath", metavar="PATH", help="Path to output standard deviation image without extension. String substitution allowed") .option(None, "--maxbase", "-M", type="string", default="{experiment!l}_max-r{run:04d}", dest="maxpath", metavar="PATH", help="Path to output maximum projection image without extension. String substitution allowed") .option(None, "--numevents", "-n", type="int", default=None, dest="numevents", help="Maximum number of events to process. Default: all") .option(None, "--skipevents", "-s", type="int", default=0, dest="skipevents", help="Number of events in the beginning of the run to skip. Default: 0") .option(None, "--verbose", "-v", action="store_true", default=False, dest="verbose", help="Print more information about progress") .option(None, "--pickle-optical-metrology", "-m", action="store_true", default=False, dest="pickle_optical_metrology", help="If writing pickle files, use the optical metrology in the experiment's calib directory") .option(None, "--bin_size", "-b", type="int", default=None, dest="bin_size", help="Rayonix detector bin size") .option(None, "--override_beam_x", "-X", type="float", default=None, dest="override_beam_x", help="Rayonix detector beam center x coordinate") .option(None, "--override_beam_y", "-Y", type="float", default=None, dest="override_beam_y", help="Rayonix detector beam center y coordinate") .option(None, "--calib_dir", "-C", type="string", default=None, dest="calib_dir", metavar="PATH", help="calibration directory") .option(None, "--xtc_dir", "-D", type="string", default=None, dest="xtc_dir", metavar="PATH", help="xtc stream directory") .option(None, "--use_ffb", "-f", action="store_true", default=False, dest="use_ffb", help="Use the fast feedback filesystem at LCLS. Only for the active experiment!") ).process(args=argv) if len(command_line.args) > 0 or \ command_line.options.as_pickle is None or \ command_line.options.experiment is None or \ command_line.options.run is None or \ command_line.options.address is None or \ command_line.options.detz_offset is None or \ command_line.options.averagepath is None or \ command_line.options.stddevpath is None or \ command_line.options.maxpath is None or \ command_line.options.pickle_optical_metrology is None: command_line.parser.show_help() return # set this to sys.maxint to analyze all events if command_line.options.numevents is None: maxevents = sys.maxint else: maxevents = command_line.options.numevents comm = MPI.COMM_WORLD rank = comm.Get_rank() size = comm.Get_size() if command_line.options.config is not None: psana.setConfigFile(command_line.options.config) dataset_name = "exp=%s:run=%d:idx"%(command_line.options.experiment, command_line.options.run) if command_line.options.xtc_dir is not None: if command_line.options.use_ffb: raise Sorry("Cannot specify the xtc_dir and use SLAC's ffb system") dataset_name += ":dir=%s"%command_line.options.xtc_dir elif command_line.options.use_ffb: # as ffb is only at SLAC, ok to hardcode /reg/d here dataset_name += ":dir=/reg/d/ffb/%s/%s/xtc"%(command_line.options.experiment[0:3],command_line.options.experiment) ds = psana.DataSource(dataset_name) address = command_line.options.address src = psana.Source('DetInfo(%s)'%address) if not command_line.options.as_pickle: psana_det = psana.Detector(address, ds.env()) nevent = np.array([0.]) for run in ds.runs(): runnumber = run.run() # list of all events if command_line.options.skipevents > 0: print "Skipping first %d events"%command_line.options.skipevents times = run.times()[command_line.options.skipevents:] nevents = min(len(times),maxevents) # chop the list into pieces, depending on rank. This assigns each process # events such that the get every Nth event where N is the number of processes mytimes = [times[i] for i in xrange(nevents) if (i+rank)%size == 0] for i in xrange(len(mytimes)): if i%10==0: print 'Rank',rank,'processing event',rank*len(mytimes)+i,', ',i,'of',len(mytimes) evt = run.event(mytimes[i]) #print "Event #",rank*mylength+i," has id:",evt.get(EventId) if 'Rayonix' in command_line.options.address: data = evt.get(Camera.FrameV1,src) if data is None: print "No data" continue data=data.data16().astype(np.float64) elif command_line.options.as_pickle: data = evt.get(psana.ndarray_float64_3, src, 'image0') else: # get numpy array, 32x185x388 data = psana_det.calib(evt) # applies psana's complex run-dependent calibrations if data is None: print "No data" continue d = cspad_tbx.env_distance(address, run.env(), command_line.options.detz_offset) if d is None: print "No distance, skipping shot" continue if 'distance' in locals(): distance += d else: distance = np.array([float(d)]) w = cspad_tbx.evt_wavelength(evt) if w is None: print "No wavelength, skipping shot" continue if 'wavelength' in locals(): wavelength += w else: wavelength = np.array([w]) t = cspad_tbx.evt_time(evt) if t is None: print "No timestamp, skipping shot" continue if 'timestamp' in locals(): timestamp += t[0] + (t[1]/1000) else: timestamp = np.array([t[0] + (t[1]/1000)]) if 'sum' in locals(): sum+=data else: sum=np.array(data, copy=True) if 'sumsq' in locals(): sumsq+=data*data else: sumsq=data*data if 'maximum' in locals(): maximum=np.maximum(maximum,data) else: maximum=np.array(data, copy=True) nevent += 1 #sum the images across mpi cores if size > 1: print "Synchronizing rank", rank totevent = np.zeros(nevent.shape) comm.Reduce(nevent,totevent) if rank == 0 and totevent[0] == 0: raise Sorry("No events found in the run") sumall = np.zeros(sum.shape).astype(sum.dtype) comm.Reduce(sum,sumall) sumsqall = np.zeros(sumsq.shape).astype(sumsq.dtype) comm.Reduce(sumsq,sumsqall) maxall = np.zeros(maximum.shape).astype(maximum.dtype) comm.Reduce(maximum,maxall, op=MPI.MAX) waveall = np.zeros(wavelength.shape).astype(wavelength.dtype) comm.Reduce(wavelength,waveall) distall = np.zeros(distance.shape).astype(distance.dtype) comm.Reduce(distance,distall) timeall = np.zeros(timestamp.shape).astype(timestamp.dtype) comm.Reduce(timestamp,timeall) if rank==0: if size > 1: print "Synchronized" # Accumulating floating-point numbers introduces errors, # which may cause negative variances. Since a two-pass # approach is unacceptable, the standard deviation is # clamped at zero. mean = sumall / float(totevent[0]) variance = (sumsqall / float(totevent[0])) - (mean**2) variance[variance < 0] = 0 stddev = np.sqrt(variance) wavelength = waveall[0] / totevent[0] distance = distall[0] / totevent[0] pixel_size = cspad_tbx.pixel_size saturated_value = cspad_tbx.cspad_saturated_value timestamp = timeall[0] / totevent[0] timestamp = (int(timestamp), timestamp % int(timestamp) * 1000) timestamp = cspad_tbx.evt_timestamp(timestamp) if command_line.options.as_pickle: extension = ".pickle" else: extension = ".cbf" dest_paths = [cspad_tbx.pathsubst(command_line.options.averagepath + extension, evt, ds.env()), cspad_tbx.pathsubst(command_line.options.stddevpath + extension, evt, ds.env()), cspad_tbx.pathsubst(command_line.options.maxpath + extension, evt, ds.env())] dest_paths = [os.path.join(command_line.options.outputdir, path) for path in dest_paths] if 'Rayonix' in command_line.options.address: from xfel.cxi.cspad_ana import rayonix_tbx pixel_size = rayonix_tbx.get_rayonix_pixel_size(command_line.options.bin_size) beam_center = [command_line.options.override_beam_x,command_line.options.override_beam_y] detector_dimensions = rayonix_tbx.get_rayonix_detector_dimensions(command_line.options.bin_size) active_areas = flex.int([0,0,detector_dimensions[0],detector_dimensions[1]]) split_address = cspad_tbx.address_split(address) old_style_address = split_address[0] + "-" + split_address[1] + "|" + split_address[2] + "-" + split_address[3] for data, path in zip([mean, stddev, maxall], dest_paths): print "Saving", path d = cspad_tbx.dpack( active_areas=active_areas, address=old_style_address, beam_center_x=pixel_size * beam_center[0], beam_center_y=pixel_size * beam_center[1], data=flex.double(data), distance=distance, pixel_size=pixel_size, saturated_value=rayonix_tbx.rayonix_saturated_value, timestamp=timestamp, wavelength=wavelength) easy_pickle.dump(path, d) elif command_line.options.as_pickle: split_address = cspad_tbx.address_split(address) old_style_address = split_address[0] + "-" + split_address[1] + "|" + split_address[2] + "-" + split_address[3] xpp = 'xpp' in address.lower() if xpp: evt_time = cspad_tbx.evt_time(evt) # tuple of seconds, milliseconds timestamp = cspad_tbx.evt_timestamp(evt_time) # human readable format from xfel.detector_formats import detector_format_version, reverse_timestamp from xfel.cxi.cspad_ana.cspad_tbx import xpp_active_areas version_lookup = detector_format_version(old_style_address, reverse_timestamp(timestamp)[0]) assert version_lookup is not None active_areas = xpp_active_areas[version_lookup]['active_areas'] beam_center = [1765 // 2, 1765 // 2] else: if command_line.options.calib_dir is not None: metro_path = command_line.options.calib_dir elif command_line.options.pickle_optical_metrology: from xfel.cftbx.detector.cspad_cbf_tbx import get_calib_file_path metro_path = get_calib_file_path(run.env(), address, run) else: metro_path = libtbx.env.find_in_repositories("xfel/metrology/CSPad/run4/CxiDs1.0_Cspad.0") sections = parse_calib.calib2sections(metro_path) beam_center, active_areas = cspad_tbx.cbcaa( cspad_tbx.getConfig(address, ds.env()), sections) class fake_quad(object): def __init__(self, q, d): self.q = q self.d = d def quad(self): return self.q def data(self): return self.d if xpp: quads = [fake_quad(i, mean[i*8:(i+1)*8,:,:]) for i in xrange(4)] mean = cspad_tbx.image_xpp(old_style_address, None, ds.env(), active_areas, quads = quads) mean = flex.double(mean.astype(np.float64)) quads = [fake_quad(i, stddev[i*8:(i+1)*8,:,:]) for i in xrange(4)] stddev = cspad_tbx.image_xpp(old_style_address, None, ds.env(), active_areas, quads = quads) stddev = flex.double(stddev.astype(np.float64)) quads = [fake_quad(i, maxall[i*8:(i+1)*8,:,:]) for i in xrange(4)] maxall = cspad_tbx.image_xpp(old_style_address, None, ds.env(), active_areas, quads = quads) maxall = flex.double(maxall.astype(np.float64)) else: quads = [fake_quad(i, mean[i*8:(i+1)*8,:,:]) for i in xrange(4)] mean = cspad_tbx.CsPadDetector( address, evt, ds.env(), sections, quads=quads) mean = flex.double(mean.astype(np.float64)) quads = [fake_quad(i, stddev[i*8:(i+1)*8,:,:]) for i in xrange(4)] stddev = cspad_tbx.CsPadDetector( address, evt, ds.env(), sections, quads=quads) stddev = flex.double(stddev.astype(np.float64)) quads = [fake_quad(i, maxall[i*8:(i+1)*8,:,:]) for i in xrange(4)] maxall = cspad_tbx.CsPadDetector( address, evt, ds.env(), sections, quads=quads) maxall = flex.double(maxall.astype(np.float64)) for data, path in zip([mean, stddev, maxall], dest_paths): print "Saving", path d = cspad_tbx.dpack( active_areas=active_areas, address=old_style_address, beam_center_x=pixel_size * beam_center[0], beam_center_y=pixel_size * beam_center[1], data=data, distance=distance, pixel_size=pixel_size, saturated_value=saturated_value, timestamp=timestamp, wavelength=wavelength) easy_pickle.dump(path, d) else: # load a header only cspad cbf from the slac metrology from xfel.cftbx.detector import cspad_cbf_tbx import pycbf base_dxtbx = cspad_cbf_tbx.env_dxtbx_from_slac_metrology(run, address) if base_dxtbx is None: raise Sorry("Couldn't load calibration file for run %d"%run.run()) for data, path in zip([mean, stddev, maxall], dest_paths): print "Saving", path cspad_img = cspad_cbf_tbx.format_object_from_data(base_dxtbx, data, distance, wavelength, timestamp, address) cspad_img._cbf_handle.write_widefile(path, pycbf.CBF,\ pycbf.MIME_HEADERS|pycbf.MSG_DIGEST|pycbf.PAD_4K, 0)
def event(self, evt, env): """The event() function is called for every L1Accept transition. @param evt Event data object, a configure object @param env Environment object """ super(mod_radial_average, self).event(evt, env) if (evt.get("skip_event")): return # This module only applies to detectors for which a distance is # available. distance = cspad_tbx.env_distance(self.address, env, self._detz_offset) if distance is None: self.nfail += 1 self.logger.warning("event(): no distance, shot skipped") evt.put(skip_event_flag(), "skip_event") return # See r17537 of mod_average.py. device = cspad_tbx.address_split(self.address)[2] if device == 'Cspad': pixel_size = cspad_tbx.pixel_size saturated_value = cspad_tbx.cspad_saturated_value elif device == 'marccd': pixel_size = 0.079346 saturated_value = 2**16 - 1 elif device == 'Rayonix': pixel_size = rayonix_tbx.get_rayonix_pixel_size(self.bin_size) saturated_value = rayonix_tbx.rayonix_saturated_value d = cspad_tbx.dpack( active_areas=self.active_areas, address=self.address, beam_center_x=pixel_size * self.beam_center[0], beam_center_y=pixel_size * self.beam_center[1], data=self.cspad_img.iround(), # XXX ouch! distance=distance, pixel_size=pixel_size, saturated_value=saturated_value, timestamp=self.timestamp, wavelength=self.wavelength, xtal_target=self.m_xtal_target) from xfel.command_line.radial_average import run args = [ "file_path=XTC stream", "xfel_target=%s" % self.m_xtal_target, "verbose=False" ] t = self.timestamp s = t[0:4] + t[5:7] + t[8:10] + t[11:13] + t[14:16] + t[17:19] + t[ 20:23] if self._dirname is not None: dest_path = os.path.join(self._dirname, self._basename + s + ".txt") args.append("output_file=%s" % dest_path) self.logger.info("Calculating radial average for image %s" % s) xvals, results = run(args, d) evt.put(xvals, "cctbx.xfel.radial_average.xvals") evt.put(results, "cctbx.xfel.radial_average.results") def get_closest_idx(data, val): from scitbx.array_family import flex deltas = flex.abs(data - val) return flex.first_index(deltas, flex.min(deltas)) if self._two_theta_low is not None: i_low = results[get_closest_idx(xvals, self._two_theta_low)] evt.put(i_low, "cctbx.xfel.radial_average.two_theta_low") if self._two_theta_high is not None: i_high = results[get_closest_idx(xvals, self._two_theta_high)] evt.put(i_high, "cctbx.xfel.radial_average.two_theta_high")
def __init__(self, address, avg_dirname=None, avg_basename=None, stddev_dirname=None, stddev_basename=None, max_dirname=None, max_basename=None, background_path=None, flags=None, hot_threshold=None, gain_threshold=None, noise_threshold=7, elastic_threshold=9, symnoise_threshold=4, **kwds): """ @param address Full data source address of the DAQ device @param avg_dirname Directory portion of output average image XXX mean @param avg_basename Filename prefix of output average image XXX mean @param flags inactive: Eliminate the inactive pixels noelastic: Eliminate elastic scattering nohot: Eliminate the hot pixels nonoise: Eliminate noisy pixels symnoise: Symmetrically eliminate noisy pixels @param stddev_dirname Directory portion of output standard deviation image XXX std @param stddev_basename Filename prefix of output standard deviation image XXX std @param max_dirname Directory portion of output maximum projection image @param max_basename Filename prefix of output maximum projection image """ super(average_mixin, self).__init__( address=address, **kwds ) self.roi = None self.avg_basename = cspad_tbx.getOptString(avg_basename) self.avg_dirname = cspad_tbx.getOptString(avg_dirname) self.detector = cspad_tbx.address_split(address)[0] self.flags = cspad_tbx.getOptStrings(flags, default = []) self.stddev_basename = cspad_tbx.getOptString(stddev_basename) self.stddev_dirname = cspad_tbx.getOptString(stddev_dirname) self.max_basename = cspad_tbx.getOptString(max_basename) self.max_dirname = cspad_tbx.getOptString(max_dirname) self.background_path = cspad_tbx.getOptString(background_path) self.hot_threshold = cspad_tbx.getOptFloat(hot_threshold) self.gain_threshold = cspad_tbx.getOptFloat(gain_threshold) self.noise_threshold = cspad_tbx.getOptFloat(noise_threshold) self.elastic_threshold = cspad_tbx.getOptFloat(elastic_threshold) self.symnoise_threshold = cspad_tbx.getOptFloat(symnoise_threshold) if background_path is not None: background_dict = easy_pickle.load(background_path) self.background_img = background_dict['DATA'] self._have_max = self.max_basename is not None or \ self.max_dirname is not None self._have_mean = self.avg_basename is not None or \ self.avg_dirname is not None self._have_std = self.stddev_basename is not None or \ self.stddev_dirname is not None # Start a server process which holds a set of Python objects that # other processes can manipulate using proxies. The queues will # be used in endjob() to pass images between the worker processes, # and the lock will ensure the transfer is treated as a critical # section. There is therefore the risk of a hang if the queues # cannot hold all the data one process will supply before another # empties it. # # In an attempt to alleviate this issue, separate queues are used # for the potentially big images. The hope is to prevent # producers from blocking while consumers are locked out by using # more buffers. mgr = multiprocessing.Manager() self._lock = mgr.Lock() self._metadata = mgr.dict() self._queue_max = mgr.Queue() self._queue_sum = mgr.Queue() self._queue_ssq = mgr.Queue()
def event(self, evt, env): """The event() function is called for every L1Accept transition. XXX Since the viewer is now running in a parallel process, the averaging here is now the bottleneck. @param evt Event data object, a configure object @param env Environment object """ from pyana.event import Event self.n_shots += 1 super(mod_view, self).event(evt, env) if evt.status() != Event.Normal or evt.get( 'skip_event'): # XXX transition return # Get the distance for the detectors that should have it, and set # it to NaN for those that should not. if self.detector == 'CxiDs1' or \ self.detector == 'CxiDsd' or \ self.detector == 'XppGon': distance = cspad_tbx.env_distance(self.address, env, self._detz_offset) if distance is None: self.nfail += 1 self.logger.warning("event(): no distance, shot skipped") evt.put(skip_event_flag(), "skip_event") return else: distance = float('nan') if not self._proc.is_alive(): evt.setStatus(Event.Stop) # Early return if the next update to the viewer is more than # self.ncollate shots away. XXX Since the common_mode.event() # function does quite a bit of processing, the savings are # probably not so big. next_update = (self.nupdate - 1) - (self.nshots - 1) % self.nupdate if (self.ncollate > 0 and next_update >= self.ncollate): return if self.sigma_scaling: self.do_sigma_scaling() if self.photon_counting: self.do_photon_counting() # Trim the disabled section from the Sc1 detector image. XXX This # is a bit of a kludge, really. # if (self.address == "CxiSc1-0|Cspad2x2-0"): # self.cspad_img = self.cspad_img[185:2 * 185, :] # Update the sum of the valid images, starting a new collation if # appropriate. This guarantees self.nvalid > 0. if (self.nvalid == 0 or self.ncollate > 0 and self.nvalid >= self.ncollate): self.img_sum = self.cspad_img self.nvalid = 1 else: self.img_sum += self.cspad_img self.nvalid += 1 # Update the viewer to display the current average image, and # start a new collation, if appropriate. if (next_update == 0): from time import localtime, strftime time_str = strftime("%H:%M:%S", localtime(evt.getTime().seconds())) title = "r%04d@%s: average of %d last images on %s" \ % (evt.run(), time_str, self.nvalid, self.address) # See also mod_average.py. device = cspad_tbx.address_split(self.address)[2] if device == 'Cspad': beam_center = self.beam_center pixel_size = cspad_tbx.pixel_size saturated_value = cspad_tbx.cspad_saturated_value elif device == 'marccd': beam_center = tuple(t // 2 for t in self.img_sum.focus()) pixel_size = 0.079346 saturated_value = 2**16 - 1 # Wait for the viewer process to empty the queue before feeding # it a new image, and ensure not to hang if the viewer process # exits. Because of multithreading/multiprocessing semantics, # self._queue.empty() is unreliable. fmt = _Format(BEAM_CENTER=beam_center, DATA=self.img_sum / self.nvalid, DETECTOR_ADDRESS=self.address, DISTANCE=distance, PIXEL_SIZE=pixel_size, SATURATED_VALUE=saturated_value, TIME_TUPLE=cspad_tbx.evt_time(evt), WAVELENGTH=self.wavelength) while not self._queue.empty(): if not self._proc.is_alive(): evt.setStatus(Event.Stop) return while True: try: self._queue.put((fmt, title), timeout=1) break except Exception: pass if (self.ncollate > 0): self.nvalid = 0
def event(self, evt, env): """The event() function is called for every L1Accept transition. XXX Since the viewer is now running in a parallel process, the averaging here is now the bottleneck. @param evt Event data object, a configure object @param env Environment object """ from pyana.event import Event self.n_shots += 1 super(mod_view, self).event(evt, env) if evt.status() != Event.Normal or evt.get('skip_event'): # XXX transition return # Get the distance for the detectors that should have it, and set # it to NaN for those that should not. if self.detector == 'CxiDs1' or \ self.detector == 'CxiDsd' or \ self.detector == 'XppGon': distance = cspad_tbx.env_distance(self.address, env, self._detz_offset) if distance is None: self.nfail += 1 self.logger.warning("event(): no distance, shot skipped") evt.put(skip_event_flag(), "skip_event") return else: distance = float('nan') if not self._proc.is_alive(): evt.setStatus(Event.Stop) # Early return if the next update to the viewer is more than # self.ncollate shots away. XXX Since the common_mode.event() # function does quite a bit of processing, the savings are # probably not so big. next_update = (self.nupdate - 1) - (self.nshots - 1) % self.nupdate if (self.ncollate > 0 and next_update >= self.ncollate): return if self.sigma_scaling: self.do_sigma_scaling() if self.photon_counting: self.do_photon_counting() # Trim the disabled section from the Sc1 detector image. XXX This # is a bit of a kludge, really. # if (self.address == "CxiSc1-0|Cspad2x2-0"): # self.cspad_img = self.cspad_img[185:2 * 185, :] # Update the sum of the valid images, starting a new collation if # appropriate. This guarantees self.nvalid > 0. if (self.nvalid == 0 or self.ncollate > 0 and self.nvalid >= self.ncollate): self.img_sum = self.cspad_img self.nvalid = 1 else: self.img_sum += self.cspad_img self.nvalid += 1 # Update the viewer to display the current average image, and # start a new collation, if appropriate. if (next_update == 0): from time import localtime, strftime time_str = strftime("%H:%M:%S", localtime(evt.getTime().seconds())) title = "r%04d@%s: average of %d last images on %s" \ % (evt.run(), time_str, self.nvalid, self.address) # See also mod_average.py. device = cspad_tbx.address_split(self.address)[2] if device == 'Cspad': beam_center = self.beam_center pixel_size = cspad_tbx.pixel_size saturated_value = cspad_tbx.cspad_saturated_value elif device == 'marccd': beam_center = tuple(t // 2 for t in self.img_sum.focus()) pixel_size = 0.079346 saturated_value = 2**16 - 1 # Wait for the viewer process to empty the queue before feeding # it a new image, and ensure not to hang if the viewer process # exits. Because of multithreading/multiprocessing semantics, # self._queue.empty() is unreliable. fmt = _Format(BEAM_CENTER=beam_center, DATA=self.img_sum / self.nvalid, DETECTOR_ADDRESS=self.address, DISTANCE=distance, PIXEL_SIZE=pixel_size, SATURATED_VALUE=saturated_value, TIME_TUPLE=cspad_tbx.evt_time(evt), WAVELENGTH=self.wavelength) while not self._queue.empty(): if not self._proc.is_alive(): evt.setStatus(Event.Stop) return while True: try: self._queue.put((fmt, title), timeout=1) break except Exception: pass if (self.ncollate > 0): self.nvalid = 0
def endjob(self, obj1, obj2=None): """The endjob() function writes the mean and standard deviation images to disk. @param evt Event object (psana only) @param env Environment object """ if obj2 is None: env = obj1 else: evt = obj1 env = obj2 stats = super(mod_average, self).endjob(env) if stats is None: return device = cspad_tbx.address_split(self.address)[2] if device == 'Andor': beam_center = (0, 0) # XXX Fiction! pixel_size = 13.5e-3 # XXX Should not be hardcoded here! saturated_value = 10000 elif device == 'Cspad' or device == 'Cspad2x2': beam_center = self.beam_center pixel_size = cspad_tbx.pixel_size saturated_value = cspad_tbx.cspad_saturated_value elif device == 'marccd': beam_center = tuple(t // 2 for t in d['mean_img'].focus()) pixel_size = 0.079346 saturated_value = 2**16 - 1 if stats['nmemb'] > 0: if self.avg_dirname is not None or \ self.avg_basename is not None or \ self._mean_out is not None: d = cspad_tbx.dpack( active_areas=self.active_areas, address=self.address, beam_center_x=pixel_size * beam_center[0], beam_center_y=pixel_size * beam_center[1], data=stats['mean_img'], distance=stats['distance'], pixel_size=pixel_size, saturated_value=saturated_value, timestamp=cspad_tbx.evt_timestamp(stats['time']), wavelength=stats['wavelength']) if self._mean_out is not None: p = cspad_tbx.dwritef2(d, self._mean_out) else: p = cspad_tbx.dwritef(d, self.avg_dirname, self.avg_basename) self.logger.info("Average written to %s" % p) if self.stddev_dirname is not None or \ self.stddev_basename is not None or \ self._std_out is not None: d = cspad_tbx.dpack( active_areas=self.active_areas, address=self.address, beam_center_x=pixel_size * beam_center[0], beam_center_y=pixel_size * beam_center[1], data=stats['std_img'], distance=stats['distance'], pixel_size=pixel_size, saturated_value=saturated_value, timestamp=cspad_tbx.evt_timestamp(stats['time']), wavelength=stats['wavelength']) if self._std_out is not None: p = cspad_tbx.dwritef2(d, self._std_out) else: p = cspad_tbx.dwritef(d, self.stddev_dirname, self.stddev_basename) self.logger.info("Standard deviation written to %s" % p) if self.max_dirname is not None or \ self.max_basename is not None or \ self._max_out is not None: d = cspad_tbx.dpack( active_areas=self.active_areas, address=self.address, beam_center_x=pixel_size * beam_center[0], beam_center_y=pixel_size * beam_center[1], data=stats['max_img'], distance=stats['distance'], pixel_size=pixel_size, saturated_value=saturated_value, timestamp=cspad_tbx.evt_timestamp(stats['time']), wavelength=stats['wavelength']) if self._max_out is not None: p = cspad_tbx.dwritef2(d, self._max_out) else: p = cspad_tbx.dwritef(d, self.max_dirname, self.max_basename) self.logger.info("Max written to %s" % p) if stats['nfail'] == 0: self.logger.info("%d images processed" % stats['nmemb']) else: self.logger.warning( "%d images processed, %d failed" % (stats['nmemb'], stats['nfail']))
def __init__(self, address, calib_dir=None, common_mode_correction="none", photon_threshold=None, two_photon_threshold=None, dark_path=None, dark_stddev=None, mask_path=None, gain_map_path=None, gain_map_level=None, cache_image=True, roi=None, laser_1_status=None, laser_4_status=None, laser_wait_time=None, override_beam_x=None, override_beam_y=None, bin_size=None, crop_rayonix=False, **kwds): """The common_mode_correction class constructor stores the parameters passed from the pyana configuration file in instance variables. @param address Full data source address of the DAQ device @param calib_dir Directory with calibration information @param common_mode_correction The type of common mode correction to apply @param dark_path Path to input average dark image @param dark_stddev Path to input standard deviation dark image, required if @p dark_path is given @param mask_path Path to input mask. Pixels to mask out should be set to -2 @param gain_map_path Path to input gain map. Multiplied times the image. @param gain_map_level If set, all the '1' pixels in the gain_map are set to this multiplier and all the '0' pixels in the gain_map are set to '1'. If not set, use the values in the gain_map directly @param laser_1_status 0 or 1 to indicate that the laser should be off or on respectively @param laser_4_status 0 or 1 to indicate that the laser should be off or on respectively @param laser_wait_time Length of time in milliseconds to wait after a laser change of status to begin accepting images again. (rejection of images occurs immediately after status change). @param override_beam_x override value for x coordinate of beam center in pixels @param override_beam_y override value for y coordinate of beam center in pixels @param bin_size bin size for rayonix detector used to determin pixel size @param crop_rayonix whether to crop rayonix images such that image center is the beam center """ # Cannot use the super().__init__() construct here, because # common_mode_correction refers to the argument, and not the # class. mod_event_info.__init__(self, address=address, **kwds) # The paths will be substituted in beginjob(), where evt and env # are available. self._dark_path = cspad_tbx.getOptString(dark_path) self._dark_stddev_path = cspad_tbx.getOptString(dark_stddev) self._gain_map_path = cspad_tbx.getOptString(gain_map_path) self._mask_path = cspad_tbx.getOptString(mask_path) self.gain_map_level = cspad_tbx.getOptFloat(gain_map_level) self.common_mode_correction = cspad_tbx.getOptString(common_mode_correction) self.photon_threshold = cspad_tbx.getOptFloat(photon_threshold) self.two_photon_threshold = cspad_tbx.getOptFloat(two_photon_threshold) self.cache_image = cspad_tbx.getOptBool(cache_image) self.filter_laser_1_status = cspad_tbx.getOptInteger(laser_1_status) self.filter_laser_4_status = cspad_tbx.getOptInteger(laser_4_status) if self.filter_laser_1_status is not None: self.filter_laser_1_status = bool(self.filter_laser_1_status) if self.filter_laser_4_status is not None: self.filter_laser_4_status = bool(self.filter_laser_4_status) self.filter_laser_wait_time = cspad_tbx.getOptInteger(laser_wait_time) self.override_beam_x = cspad_tbx.getOptFloat(override_beam_x) self.override_beam_y = cspad_tbx.getOptFloat(override_beam_y) self.bin_size = cspad_tbx.getOptInteger(bin_size) self.crop_rayonix = cspad_tbx.getOptBool(crop_rayonix) self.cspad_img = None # The current image - set by self.event() self.sum_common_mode = 0 self.sumsq_common_mode = 0 self.roi = cspad_tbx.getOptROI(roi) # used to ignore the signal region in chebyshev fit assert self.common_mode_correction in \ ("gaussian", "mean", "median", "mode", "none", "chebyshev") # Get and parse metrology. self.sections = None device = cspad_tbx.address_split(self.address)[2] if device == 'Andor': self.sections = [] # XXX FICTION elif device == 'Cspad': if self.address == 'XppGon-0|Cspad-0': self.sections = [] # Not used for XPP else: self.sections = calib2sections(cspad_tbx.getOptString(calib_dir)) elif device == 'Cspad2x2': # There is no metrology information for the Sc1 detector, so # make it up. The sections are rotated by 90 degrees with # respect to the "standing up" convention. self.sections = [[Section(90, (185 / 2 + 0, (2 * 194 + 3) / 2)), Section(90, (185 / 2 + 185, (2 * 194 + 3) / 2))]] elif device == 'marccd': self.sections = [] # XXX FICTION elif device == 'pnCCD': self.sections = [] # XXX FICTION elif device == 'Rayonix': self.sections = [] # XXX FICTION elif device == 'Opal1000': self.sections = [] # XXX FICTION if self.sections is None: raise RuntimeError("Failed to load metrology")
def average(argv=None): if argv == None: argv = sys.argv[1:] try: from mpi4py import MPI except ImportError: raise Sorry("MPI not found") command_line = (libtbx.option_parser.option_parser(usage=""" %s [-p] -c config -x experiment -a address -r run -d detz_offset [-o outputdir] [-A averagepath] [-S stddevpath] [-M maxpath] [-n numevents] [-s skipnevents] [-v] [-m] [-b bin_size] [-X override_beam_x] [-Y override_beam_y] [-D xtc_dir] [-f] [-g gain_mask_value] [--min] [--minpath minpath] To write image pickles use -p, otherwise the program writes CSPAD CBFs. Writing CBFs requires the geometry to be already deployed. Examples: cxi.mpi_average -c cxi49812/average.cfg -x cxi49812 -a CxiDs1.0:Cspad.0 -r 25 -d 571 Use one process on the current node to process all the events from run 25 of experiment cxi49812, using a detz_offset of 571. mpirun -n 16 cxi.mpi_average -c cxi49812/average.cfg -x cxi49812 -a CxiDs1.0:Cspad.0 -r 25 -d 571 As above, using 16 cores on the current node. bsub -a mympi -n 100 -o average.out -q psanaq cxi.mpi_average -c cxi49812/average.cfg -x cxi49812 -a CxiDs1.0:Cspad.0 -r 25 -d 571 -o cxi49812 As above, using the psanaq and 100 cores, putting the log in average.out and the output images in the folder cxi49812. """ % libtbx.env.dispatcher_name).option( None, "--as_pickle", "-p", action="store_true", default=False, dest="as_pickle", help="Write results as image pickle files instead of cbf files" ).option( None, "--raw_data", "-R", action="store_true", default=False, dest="raw_data", help= "Disable psana corrections such as dark pedestal subtraction or common mode (cbf only)" ).option( None, "--background_pickle", "-B", default=None, dest="background_pickle", help="" ).option( None, "--config", "-c", type="string", default=None, dest="config", metavar="PATH", help="psana config file" ).option( None, "--experiment", "-x", type="string", default=None, dest="experiment", help="experiment name (eg cxi84914)" ).option( None, "--run", "-r", type="int", default=None, dest="run", help="run number" ).option( None, "--address", "-a", type="string", default="CxiDs2.0:Cspad.0", dest="address", help="detector address name (eg CxiDs2.0:Cspad.0)" ).option( None, "--detz_offset", "-d", type="float", default=None, dest="detz_offset", help= "offset (in mm) from sample interaction region to back of CSPAD detector rail (CXI), or detector distance (XPP)" ).option( None, "--outputdir", "-o", type="string", default=".", dest="outputdir", metavar="PATH", help="Optional path to output directory for output files" ).option( None, "--averagebase", "-A", type="string", default="{experiment!l}_avg-r{run:04d}", dest="averagepath", metavar="PATH", help= "Path to output average image without extension. String substitution allowed" ).option( None, "--stddevbase", "-S", type="string", default="{experiment!l}_stddev-r{run:04d}", dest="stddevpath", metavar="PATH", help= "Path to output standard deviation image without extension. String substitution allowed" ).option( None, "--maxbase", "-M", type="string", default="{experiment!l}_max-r{run:04d}", dest="maxpath", metavar="PATH", help= "Path to output maximum projection image without extension. String substitution allowed" ).option( None, "--numevents", "-n", type="int", default=None, dest="numevents", help="Maximum number of events to process. Default: all" ).option( None, "--skipevents", "-s", type="int", default=0, dest="skipevents", help="Number of events in the beginning of the run to skip. Default: 0" ).option( None, "--verbose", "-v", action="store_true", default=False, dest="verbose", help="Print more information about progress" ).option( None, "--pickle-optical-metrology", "-m", action="store_true", default=False, dest="pickle_optical_metrology", help= "If writing pickle files, use the optical metrology in the experiment's calib directory" ).option( None, "--bin_size", "-b", type="int", default=None, dest="bin_size", help="Rayonix detector bin size" ).option( None, "--override_beam_x", "-X", type="float", default=None, dest="override_beam_x", help="Rayonix detector beam center x coordinate" ).option( None, "--override_beam_y", "-Y", type="float", default=None, dest="override_beam_y", help="Rayonix detector beam center y coordinate" ).option( None, "--calib_dir", "-C", type="string", default=None, dest="calib_dir", metavar="PATH", help="calibration directory" ).option( None, "--pickle_calib_dir", "-P", type="string", default=None, dest="pickle_calib_dir", metavar="PATH", help= "pickle calibration directory specification. Replaces --calib_dir functionality." ).option( None, "--xtc_dir", "-D", type="string", default=None, dest="xtc_dir", metavar="PATH", help="xtc stream directory" ).option( None, "--use_ffb", "-f", action="store_true", default=False, dest="use_ffb", help= "Use the fast feedback filesystem at LCLS. Only for the active experiment!" ).option( None, "--gain_mask_value", "-g", type="float", default=None, dest="gain_mask_value", help= "Ratio between low and high gain pixels, if CSPAD in mixed-gain mode. Only used in CBF averaging mode." ).option( None, "--min", None, action="store_true", default=False, dest="do_minimum_projection", help="Output a minimum projection" ).option( None, "--minpath", None, type="string", default="{experiment!l}_min-r{run:04d}", dest="minpath", metavar="PATH", help= "Path to output minimum image without extension. String substitution allowed" )).process(args=argv) if len(command_line.args) > 0 or \ command_line.options.as_pickle is None or \ command_line.options.experiment is None or \ command_line.options.run is None or \ command_line.options.address is None or \ command_line.options.detz_offset is None or \ command_line.options.averagepath is None or \ command_line.options.stddevpath is None or \ command_line.options.maxpath is None or \ command_line.options.pickle_optical_metrology is None: command_line.parser.show_help() return # set this to sys.maxint to analyze all events if command_line.options.numevents is None: maxevents = sys.maxsize else: maxevents = command_line.options.numevents comm = MPI.COMM_WORLD rank = comm.Get_rank() size = comm.Get_size() if command_line.options.config is not None: psana.setConfigFile(command_line.options.config) dataset_name = "exp=%s:run=%d:smd" % (command_line.options.experiment, command_line.options.run) if command_line.options.xtc_dir is not None: if command_line.options.use_ffb: raise Sorry("Cannot specify the xtc_dir and use SLAC's ffb system") dataset_name += ":dir=%s" % command_line.options.xtc_dir elif command_line.options.use_ffb: # as ffb is only at SLAC, ok to hardcode /reg/d here dataset_name += ":dir=/reg/d/ffb/%s/%s/xtc" % ( command_line.options.experiment[0:3], command_line.options.experiment) if command_line.options.calib_dir is not None: psana.setOption('psana.calib-dir', command_line.options.calib_dir) ds = psana.DataSource(dataset_name) address = command_line.options.address src = psana.Source('DetInfo(%s)' % address) nevent = np.array([0.]) if command_line.options.background_pickle is not None: background = easy_pickle.load( command_line.options.background_pickle)['DATA'].as_numpy_array() for run in ds.runs(): runnumber = run.run() if not command_line.options.as_pickle: psana_det = psana.Detector(address, ds.env()) # list of all events if command_line.options.skipevents > 0: print("Skipping first %d events" % command_line.options.skipevents) elif "Rayonix" in command_line.options.address: print("Skipping first image in the Rayonix detector" ) # Shuttering issue command_line.options.skipevents = 1 for i, evt in enumerate(run.events()): if i % size != rank: continue if i < command_line.options.skipevents: continue if i >= maxevents: break if i % 10 == 0: print('Rank', rank, 'processing event', i) #print "Event #",rank*mylength+i," has id:",evt.get(EventId) if 'Rayonix' in command_line.options.address or 'FeeHxSpectrometer' in command_line.options.address or 'XrayTransportDiagnostic' in command_line.options.address: data = evt.get(psana.Camera.FrameV1, src) if data is None: print("No data") continue data = data.data16().astype(np.float64) elif command_line.options.as_pickle: data = evt.get(psana.ndarray_float64_3, src, 'image0') else: # get numpy array, 32x185x388 from xfel.cftbx.detector.cspad_cbf_tbx import get_psana_corrected_data if command_line.options.raw_data: data = get_psana_corrected_data(psana_det, evt, use_default=False, dark=False, common_mode=None, apply_gain_mask=False, per_pixel_gain=False) else: if command_line.options.gain_mask_value is None: data = get_psana_corrected_data(psana_det, evt, use_default=True) else: data = get_psana_corrected_data( psana_det, evt, use_default=False, dark=True, common_mode=None, apply_gain_mask=True, gain_mask_value=command_line.options. gain_mask_value, per_pixel_gain=False) if data is None: print("No data") continue if command_line.options.background_pickle is not None: data -= background if 'FeeHxSpectrometer' in command_line.options.address or 'XrayTransportDiagnostic' in command_line.options.address: distance = np.array([0.0]) wavelength = np.array([1.0]) else: d = cspad_tbx.env_distance(address, run.env(), command_line.options.detz_offset) if d is None: print("No distance, using distance", command_line.options.detz_offset) assert command_line.options.detz_offset is not None if 'distance' not in locals(): distance = np.array([command_line.options.detz_offset]) else: distance += command_line.options.detz_offset else: if 'distance' in locals(): distance += d else: distance = np.array([float(d)]) w = cspad_tbx.evt_wavelength(evt) if w is None: print("No wavelength") if 'wavelength' not in locals(): wavelength = np.array([1.0]) else: if 'wavelength' in locals(): wavelength += w else: wavelength = np.array([w]) t = cspad_tbx.evt_time(evt) if t is None: print("No timestamp, skipping shot") continue if 'timestamp' in locals(): timestamp += t[0] + (t[1] / 1000) else: timestamp = np.array([t[0] + (t[1] / 1000)]) if 'sum' in locals(): sum += data else: sum = np.array(data, copy=True) if 'sumsq' in locals(): sumsq += data * data else: sumsq = data * data if 'maximum' in locals(): maximum = np.maximum(maximum, data) else: maximum = np.array(data, copy=True) if command_line.options.do_minimum_projection: if 'minimum' in locals(): minimum = np.minimum(minimum, data) else: minimum = np.array(data, copy=True) nevent += 1 #sum the images across mpi cores if size > 1: print("Synchronizing rank", rank) totevent = np.zeros(nevent.shape) comm.Reduce(nevent, totevent) if rank == 0 and totevent[0] == 0: raise Sorry("No events found in the run") sumall = np.zeros(sum.shape).astype(sum.dtype) comm.Reduce(sum, sumall) sumsqall = np.zeros(sumsq.shape).astype(sumsq.dtype) comm.Reduce(sumsq, sumsqall) maxall = np.zeros(maximum.shape).astype(maximum.dtype) comm.Reduce(maximum, maxall, op=MPI.MAX) if command_line.options.do_minimum_projection: minall = np.zeros(maximum.shape).astype(minimum.dtype) comm.Reduce(minimum, minall, op=MPI.MIN) waveall = np.zeros(wavelength.shape).astype(wavelength.dtype) comm.Reduce(wavelength, waveall) distall = np.zeros(distance.shape).astype(distance.dtype) comm.Reduce(distance, distall) timeall = np.zeros(timestamp.shape).astype(timestamp.dtype) comm.Reduce(timestamp, timeall) if rank == 0: if size > 1: print("Synchronized") # Accumulating floating-point numbers introduces errors, # which may cause negative variances. Since a two-pass # approach is unacceptable, the standard deviation is # clamped at zero. mean = sumall / float(totevent[0]) variance = (sumsqall / float(totevent[0])) - (mean**2) variance[variance < 0] = 0 stddev = np.sqrt(variance) wavelength = waveall[0] / totevent[0] distance = distall[0] / totevent[0] pixel_size = cspad_tbx.pixel_size saturated_value = cspad_tbx.cspad_saturated_value timestamp = timeall[0] / totevent[0] timestamp = (int(timestamp), timestamp % int(timestamp) * 1000) timestamp = cspad_tbx.evt_timestamp(timestamp) if command_line.options.as_pickle: extension = ".pickle" else: extension = ".cbf" dest_paths = [ cspad_tbx.pathsubst(command_line.options.averagepath + extension, evt, ds.env()), cspad_tbx.pathsubst(command_line.options.stddevpath + extension, evt, ds.env()), cspad_tbx.pathsubst(command_line.options.maxpath + extension, evt, ds.env()) ] if command_line.options.do_minimum_projection: dest_paths.append( cspad_tbx.pathsubst(command_line.options.minpath + extension, evt, ds.env())) dest_paths = [ os.path.join(command_line.options.outputdir, path) for path in dest_paths ] if 'Rayonix' in command_line.options.address: all_data = [mean, stddev, maxall] if command_line.options.do_minimum_projection: all_data.append(minall) from xfel.cxi.cspad_ana import rayonix_tbx pixel_size = rayonix_tbx.get_rayonix_pixel_size( command_line.options.bin_size) beam_center = [ command_line.options.override_beam_x, command_line.options.override_beam_y ] active_areas = flex.int([0, 0, mean.shape[1], mean.shape[0]]) split_address = cspad_tbx.address_split(address) old_style_address = split_address[0] + "-" + split_address[ 1] + "|" + split_address[2] + "-" + split_address[3] for data, path in zip(all_data, dest_paths): print("Saving", path) d = cspad_tbx.dpack( active_areas=active_areas, address=old_style_address, beam_center_x=pixel_size * beam_center[0], beam_center_y=pixel_size * beam_center[1], data=flex.double(data), distance=distance, pixel_size=pixel_size, saturated_value=rayonix_tbx.rayonix_saturated_value, timestamp=timestamp, wavelength=wavelength) easy_pickle.dump(path, d) elif 'FeeHxSpectrometer' in command_line.options.address or 'XrayTransportDiagnostic' in command_line.options.address: all_data = [mean, stddev, maxall] split_address = cspad_tbx.address_split(address) old_style_address = split_address[0] + "-" + split_address[ 1] + "|" + split_address[2] + "-" + split_address[3] if command_line.options.do_minimum_projection: all_data.append(minall) for data, path in zip(all_data, dest_paths): d = cspad_tbx.dpack(address=old_style_address, data=flex.double(data), distance=distance, pixel_size=0.1, timestamp=timestamp, wavelength=wavelength) print("Saving", path) easy_pickle.dump(path, d) elif command_line.options.as_pickle: split_address = cspad_tbx.address_split(address) old_style_address = split_address[0] + "-" + split_address[ 1] + "|" + split_address[2] + "-" + split_address[3] xpp = 'xpp' in address.lower() if xpp: evt_time = cspad_tbx.evt_time( evt) # tuple of seconds, milliseconds timestamp = cspad_tbx.evt_timestamp( evt_time) # human readable format from iotbx.detectors.cspad_detector_formats import detector_format_version, reverse_timestamp from xfel.cxi.cspad_ana.cspad_tbx import xpp_active_areas version_lookup = detector_format_version( old_style_address, reverse_timestamp(timestamp)[0]) assert version_lookup is not None active_areas = xpp_active_areas[version_lookup]['active_areas'] beam_center = [1765 // 2, 1765 // 2] else: if command_line.options.pickle_calib_dir is not None: metro_path = command_line.options.pickle_calib_dir elif command_line.options.pickle_optical_metrology: from xfel.cftbx.detector.cspad_cbf_tbx import get_calib_file_path metro_path = get_calib_file_path(run.env(), address, run) else: metro_path = libtbx.env.find_in_repositories( "xfel/metrology/CSPad/run4/CxiDs1.0_Cspad.0") sections = parse_calib.calib2sections(metro_path) beam_center, active_areas = cspad_tbx.cbcaa( cspad_tbx.getConfig(address, ds.env()), sections) class fake_quad(object): def __init__(self, q, d): self.q = q self.d = d def quad(self): return self.q def data(self): return self.d if xpp: quads = [ fake_quad(i, mean[i * 8:(i + 1) * 8, :, :]) for i in range(4) ] mean = cspad_tbx.image_xpp(old_style_address, None, ds.env(), active_areas, quads=quads) mean = flex.double(mean.astype(np.float64)) quads = [ fake_quad(i, stddev[i * 8:(i + 1) * 8, :, :]) for i in range(4) ] stddev = cspad_tbx.image_xpp(old_style_address, None, ds.env(), active_areas, quads=quads) stddev = flex.double(stddev.astype(np.float64)) quads = [ fake_quad(i, maxall[i * 8:(i + 1) * 8, :, :]) for i in range(4) ] maxall = cspad_tbx.image_xpp(old_style_address, None, ds.env(), active_areas, quads=quads) maxall = flex.double(maxall.astype(np.float64)) if command_line.options.do_minimum_projection: quads = [ fake_quad(i, minall[i * 8:(i + 1) * 8, :, :]) for i in range(4) ] minall = cspad_tbx.image_xpp(old_style_address, None, ds.env(), active_areas, quads=quads) minall = flex.double(minall.astype(np.float64)) else: quads = [ fake_quad(i, mean[i * 8:(i + 1) * 8, :, :]) for i in range(4) ] mean = cspad_tbx.CsPadDetector(address, evt, ds.env(), sections, quads=quads) mean = flex.double(mean.astype(np.float64)) quads = [ fake_quad(i, stddev[i * 8:(i + 1) * 8, :, :]) for i in range(4) ] stddev = cspad_tbx.CsPadDetector(address, evt, ds.env(), sections, quads=quads) stddev = flex.double(stddev.astype(np.float64)) quads = [ fake_quad(i, maxall[i * 8:(i + 1) * 8, :, :]) for i in range(4) ] maxall = cspad_tbx.CsPadDetector(address, evt, ds.env(), sections, quads=quads) maxall = flex.double(maxall.astype(np.float64)) if command_line.options.do_minimum_projection: quads = [ fake_quad(i, minall[i * 8:(i + 1) * 8, :, :]) for i in range(4) ] minall = cspad_tbx.CsPadDetector(address, evt, ds.env(), sections, quads=quads) minall = flex.double(minall.astype(np.float64)) all_data = [mean, stddev, maxall] if command_line.options.do_minimum_projection: all_data.append(minall) for data, path in zip(all_data, dest_paths): print("Saving", path) d = cspad_tbx.dpack(active_areas=active_areas, address=old_style_address, beam_center_x=pixel_size * beam_center[0], beam_center_y=pixel_size * beam_center[1], data=data, distance=distance, pixel_size=pixel_size, saturated_value=saturated_value, timestamp=timestamp, wavelength=wavelength) easy_pickle.dump(path, d) else: # load a header only cspad cbf from the slac metrology from xfel.cftbx.detector import cspad_cbf_tbx import pycbf base_dxtbx = cspad_cbf_tbx.env_dxtbx_from_slac_metrology( run, address) if base_dxtbx is None: raise Sorry("Couldn't load calibration file for run %d" % run.run()) all_data = [mean, stddev, maxall] if command_line.options.do_minimum_projection: all_data.append(minall) for data, path in zip(all_data, dest_paths): print("Saving", path) cspad_img = cspad_cbf_tbx.format_object_from_data( base_dxtbx, data, distance, wavelength, timestamp, address, round_to_int=False) cspad_img._cbf_handle.write_widefile(path, pycbf.CBF,\ pycbf.MIME_HEADERS|pycbf.MSG_DIGEST|pycbf.PAD_4K, 0)
def event(self, evt, env): """The event() function is called for every L1Accept transition. XXX more? Previously, common-mode correction was applied only after initial threshold filtering. Since the common_mode class applies the (lengthy) common-mode correction immediately after reading the image from the stream, this optimisation is currently not (elegantly) doable. @param evt Event data object, a configure object @param env Environment object """ super(mod_hitfind, self).event(evt, env) if (evt.get("skip_event")): return # This module only applies to detectors for which a distance is # available. distance = cspad_tbx.env_distance(self.address, env, self._detz_offset) if distance is None: self.nfail += 1 self.logger.warning("event(): no distance, shot skipped") evt.put(skip_event_flag(), "skip_event") return device = cspad_tbx.address_split(self.address)[2] # ***** HITFINDING ***** XXX For hitfinding it may be interesting # to look at the fraction of subzero pixels in the dark-corrected # image. if (self.m_threshold is not None): # If a threshold value is given it can be applied in one of three ways: # 1. Apply it over the whole image if (self.m_roi is None and self.m_distl_min_peaks is None): vmax = flex.max(self.cspad_img) if (vmax < self.m_threshold): if not self.m_negate_hits: # Tell downstream modules to skip this event if the threshold was not met. evt.put(skip_event_flag(), "skip_event") return elif self.m_negate_hits: evt.put(skip_event_flag(), "skip_event") return # 2. Apply threshold over a rectangular region of interest. elif (self.m_roi is not None): vmax = flex.max(self.cspad_img[self.m_roi[2]:self.m_roi[3], self.m_roi[0]:self.m_roi[1]]) if (vmax < self.m_threshold): if not self.m_negate_hits: evt.put(skip_event_flag(), "skip_event") return elif self.m_negate_hits: evt.put(skip_event_flag(), "skip_event") return # 3. Determine the spotfinder spots within the central ASICS, and accept the # image as a hit if there are m_distl_min_peaks exceeding m_threshold. # As a further requirement, the peaks must exceed 2.5 * the 90-percentile # pixel value of the central ASICS. This filter was added to avoid high-background # false positives. elif (self.m_distl_min_peaks is not None): if device == 'marccd': self.hitfinder_d['BEAM_CENTER_X'] = self.beam_center[0] self.hitfinder_d['BEAM_CENTER_Y'] = self.beam_center[1] elif device == 'Rayonix': self.hitfinder_d['BEAM_CENTER_X'] = self.beam_center[0] self.hitfinder_d['BEAM_CENTER_Y'] = self.beam_center[1] peak_heights,outvalue = self.distl_filter( self.address, self.cspad_img.iround(), # XXX correct? distance, self.timestamp, self.wavelength) if ('permissive' in self.m_distl_flags): number_of_accepted_peaks = (peak_heights > self.m_threshold).count(True) else: number_of_accepted_peaks = ((peak_heights > self.m_threshold).__and__(outvalue==0)).count(True) sec,ms = cspad_tbx.evt_time(evt) evt_time = sec + ms/1000 self.stats_logger.info("BRAGG %.3f %d" %(evt_time, number_of_accepted_peaks)) skip_event = False if number_of_accepted_peaks < self.m_distl_min_peaks: self.logger.info("Subprocess %02d: Spotfinder NO HIT image #%05d @ %s; %d spots > %d" %( env.subprocess(), self.nshots, self.timestamp, number_of_accepted_peaks, self.m_threshold)) if not self.m_negate_hits: skip_event = True else: self.logger.info("Subprocess %02d: Spotfinder YES HIT image #%05d @ %s; %d spots > %d" %( env.subprocess(), self.nshots, self.timestamp, number_of_accepted_peaks, self.m_threshold)) if self.m_negate_hits: skip_event = True if skip_event: if self.m_db_logging: # log misses to the database self.queue_entry((self.trial, evt.run(), "%.3f"%evt_time, number_of_accepted_peaks, distance, self.sifoil, self.wavelength, False, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, self.m_db_tags)) evt.put(skip_event_flag(), "skip_event") return # the indexer will log this hit when it is ran. Bug: if the spotfinder is ran by itself, this # hit will not be logged in the db. evt.put(number_of_accepted_peaks, 'sfspots') self.logger.info("Subprocess %02d: process image #%05d @ %s" % (env.subprocess(), self.nshots, self.timestamp)) # See r17537 of mod_average.py. if device == 'Cspad': pixel_size = cspad_tbx.pixel_size saturated_value = cspad_tbx.cspad_saturated_value elif device == 'marccd': pixel_size = evt.get("marccd_pixel_size") saturated_value = evt.get("marccd_saturated_value") elif device == 'Rayonix': pixel_size = rayonix_tbx.get_rayonix_pixel_size(self.bin_size) saturated_value = rayonix_tbx.rayonix_saturated_value d = cspad_tbx.dpack( active_areas=self.active_areas, address=self.address, beam_center_x=pixel_size * self.beam_center[0], beam_center_y=pixel_size * self.beam_center[1], data=self.cspad_img.iround(), # XXX ouch! distance=distance, pixel_size=pixel_size, saturated_value=saturated_value, timestamp=self.timestamp, wavelength=self.wavelength, xtal_target=self.m_xtal_target) if (self.m_dispatch == "index"): import sys from xfel.cxi.integrate_image_api import integrate_one_image info = integrate_one_image(d, integration_dirname = self.m_integration_dirname, integration_basename = self.m_integration_basename) sys.stdout = sys.__stdout__ sys.stderr = sys.__stderr__ indexed = info is not None if indexed and self.m_progress_logging: # integration pickle dictionary is available here as info.last_saved_best if info.last_saved_best["identified_isoform"] is not None: #print info.last_saved_best.keys() from cxi_xdr_xes.cftbx.cspad_ana import db dbobj = db.dbconnect(self.m_db_host, self.m_db_name, self.m_db_user, self.m_db_password) cursor = dbobj.cursor() if info.last_saved_best["identified_isoform"] in self.isoforms: PM, indices, miller_id = self.isoforms[info.last_saved_best["identified_isoform"]] else: from xfel.xpp.progress_support import progress_manager PM = progress_manager(info.last_saved_best,self.m_db_experiment_tag, self.m_trial_id, self.m_rungroup_id, evt.run()) indices, miller_id = PM.get_HKL(cursor) # cache these as they don't change for a given isoform self.isoforms[info.last_saved_best["identified_isoform"]] = PM, indices, miller_id if self.m_sql_buffer_size > 1: self.queue_progress_entry(PM.scale_frame_detail(self.timestamp,cursor,do_inserts=False)) else: PM.scale_frame_detail(self.timestamp,cursor,do_inserts=True) dbobj.commit() cursor.close() dbobj.close() if self.m_db_logging: sec,ms = cspad_tbx.evt_time(evt) evt_time = sec + ms/1000 sfspots = evt.get('sfspots') if sfspots is None: if indexed: n_spots = len(info.spotfinder_results.images[info.frames[0]]['spots_total']) else: n_spots = 0 else: n_spots = sfspots if indexed: mosaic_bloc_rotation = info.last_saved_best.get('ML_half_mosaicity_deg', [0])[0] mosaic_block_size = info.last_saved_best.get('ML_domain_size_ang', [0])[0] ewald_proximal_volume = info.last_saved_best.get('ewald_proximal_volume', [0])[0] obs = info.last_saved_best['observations'][0] cell_a, cell_b, cell_c, cell_alpha, cell_beta, cell_gamma = obs.unit_cell().parameters() pointgroup = info.last_saved_best['pointgroup'] resolution = obs.d_min() else: mosaic_bloc_rotation = mosaic_block_size = ewald_proximal_volume = cell_a = cell_b = cell_c = \ cell_alpha = cell_beta = cell_gamma = spacegroup = resolution = 0 self.queue_entry((self.trial, evt.run(), "%.3f"%evt_time, n_spots, distance, self.sifoil, self.wavelength, indexed, mosaic_bloc_rotation, mosaic_block_size, ewald_proximal_volume, pointgroup, cell_a, cell_b, cell_c, cell_alpha, cell_beta, cell_gamma, resolution, self.m_db_tags)) if (not indexed): evt.put(skip_event_flag(), "skip_event") return elif (self.m_dispatch == "nop"): pass elif (self.m_dispatch == "view"): #interactive image viewer args = ["indexing.data=dummy"] detector_format_version = detector_format_function( self.address, evt.GetTime()) if detector_format_version is not None: args += ["distl.detector_format_version=%" % detector_format_version] from xfel.phil_preferences import load_cxi_phil horizons_phil = load_cxi_phil(self.m_xtal_target, args) horizons_phil.indexing.data = d from xfel.cxi import display_spots display_spots.parameters.horizons_phil = horizons_phil display_spots.wrapper_of_callback().display(horizons_phil.indexing.data) elif (self.m_dispatch == "spots"): #interactive spotfinder viewer args = ["indexing.data=dummy"] detector_format_version = detector_format_function( self.address, evt.GetTime()) if detector_format_version is not None: args += ["distl.detector_format_version=%s" % detector_format_version] from xfel.phil_preferences import load_cxi_phil horizons_phil = load_cxi_phil(self.m_xtal_target, args) horizons_phil.indexing.data = d from xfel.cxi import display_spots display_spots.parameters.horizons_phil = horizons_phil from rstbx.new_horizons.index import pre_indexing_validation,pack_names pre_indexing_validation(horizons_phil) imagefile_arguments = pack_names(horizons_phil) horizons_phil.persist.show() from spotfinder.applications import signal_strength info = signal_strength.run_signal_strength_core(horizons_phil,imagefile_arguments) work = display_spots.wrapper_of_callback(info) work.display_with_callback(horizons_phil.indexing.data) elif (self.m_dispatch == "write_dict"): self.logger.warning( "event(): deprecated dispatch 'write_dict', use mod_dump instead") if (self.m_out_dirname is not None or self.m_out_basename is not None): cspad_tbx.dwritef(d, self.m_out_dirname, self.m_out_basename) # Diagnostic message emitted only when all the processing is done. if (env.subprocess() >= 0): self.logger.info("Subprocess %02d: accepted #%05d @ %s" % (env.subprocess(), self.nshots, self.timestamp)) else: self.logger.info("Accepted #%05d @ %s" % (self.nshots, self.timestamp))
def event(self, evt, env): """The event() function is called for every L1Accept transition. @param evt Event data object, a configure object @param env Environment object """ super(common_mode_correction, self).event(evt, env) if (evt.get("skip_event")): return if not hasattr(self, 'active_areas') or self.active_areas is None or \ not hasattr(self, 'beam_center') or self.beam_center is None: if self.address == 'XppGon-0|marccd-0': # The mod_mar module needs to have been called before this one # to set this up. The MAR does not have a configure object. self.beam_center = evt.get("marccd_beam_center") self.active_areas = evt.get("marccd_active_areas") elif self.address == 'XppEndstation-0|Rayonix-0' or \ self.address == 'MfxEndstation-0|Rayonix-0': pass # bc and aa set in the beginjob function elif self.address == 'XppGon-0|Cspad-0': # Load the active areas as determined from the optical metrology from iotbx.detectors.cspad_detector_formats import detector_format_version, reverse_timestamp from xfel.cxi.cspad_ana.cspad_tbx import xpp_active_areas version_lookup = detector_format_version( self.address, reverse_timestamp(self.timestamp)[0]) assert version_lookup is not None self.active_areas = xpp_active_areas[version_lookup][ 'active_areas'] self.beam_center = [1765 // 2, 1765 // 2] else: (self.beam_center, self.active_areas) = \ cspad_tbx.cbcaa(cspad_tbx.getConfig(self.address, env), self.sections) if self.filter_laser_1_status is not None: if (self.laser_1_status.status != self.filter_laser_1_status or (self.laser_1_ms_since_change is not None and self.laser_1_ms_since_change < self.filter_laser_wait_time)): evt.put(skip_event_flag(), "skip_event") return if self.filter_laser_4_status is not None: if (self.laser_4_status.status != self.filter_laser_4_status or (self.laser_4_ms_since_change is not None and self.laser_4_ms_since_change < self.filter_laser_wait_time)): evt.put(skip_event_flag(), "skip_event") return # Early return if the full detector image is already stored in the # event. Otherwise, get it from the stream as a double-precision # floating-point flex array. XXX It is probably not safe to key # the image on self.address, so we should come up with our own # namespace. XXX Misnomer--could be CAMP, too self.cspad_img = evt.get(self.address) if self.cspad_img is not None: return if self.address == 'XppGon-0|Cspad-0': # Kludge until cspad_tbx.image() can be rewritten to handle the # XPP metrology. self.cspad_img = cspad_tbx.image_xpp(self.address, evt, env, self.active_areas) elif self.address == 'XppEndstation-0|Rayonix-0' or \ self.address == 'MfxEndstation-0|Rayonix-0': from psana import Source, Camera import numpy as np address = cspad_tbx.old_address_to_new_address(self.address) src = Source('DetInfo(%s)' % address) self.cspad_img = evt.get(Camera.FrameV1, src) if self.cspad_img is not None: self.cspad_img = self.cspad_img.data16().astype(np.float64) elif self.address == 'CxiDg3-0|Opal1000-0': if evt.getFrameValue(self.address) is not None: self.cspad_img = evt.getFrameValue(self.address).data() elif self.address == 'CxiEndstation-0|Opal1000-2': if evt.getFrameValue(self.address) is not None: self.cspad_img = evt.getFrameValue(self.address).data() elif self.address == 'FeeHxSpectrometer-0|Opal1000-1': if evt.getFrameValue(self.address) is not None: self.cspad_img = evt.getFrameValue(self.address).data() elif self.address == 'NoDetector-0|Cspad2x2-0': import numpy as np from pypdsdata import xtc test = [] self.cspad_img = evt.get(xtc.TypeId.Type.Id_Cspad2x2Element, self.address).data() self.cspad_img = np.reshape(self.cspad_img, (370, 388)) else: try: self.cspad_img = cspad_tbx.image( self.address, cspad_tbx.getConfig(self.address, env), evt, env, self.sections) except Exception as e: self.logger.error("Error reading image data: " + str(e)) evt.put(skip_event_flag(), "skip_event") return if self.cspad_img is None: if cspad_tbx.address_split(self.address)[2] != 'Andor': self.nfail += 1 self.logger.warning("event(): no image, shot skipped") evt.put(skip_event_flag(), "skip_event") return self.cspad_img = flex.double(self.cspad_img.astype(numpy.float64)) # If a dark image was provided, subtract it from the image. There # is no point in doing common-mode correction unless the dark # image was subtracted. if (self.dark_img is not None): self.cspad_img -= self.dark_img if (self.common_mode_correction != "none"): # Mask out inactive pixels prior to common mode correction. # Pixels are marked as inactive either due to low ADU values # or non-positive standard deviations in dark image. XXX Make # the threshold tunable? cspad_mask = self.dark_mask.deep_copy() if self.roi is not None and self.common_mode_correction == "chebyshev": roi_mask = cspad_mask[self.roi[2]:self.roi[3], :] roi_mask = flex.bool(roi_mask.accessor(), False) cspad_mask.matrix_paste_block_in_place(block=roi_mask, i_row=self.roi[2], i_column=0) # Extract each active section from the assembled detector # image and apply the common mode correction. XXX Make up a # quadrant mask for the emission detector. Needs to be # checked! config = cspad_tbx.getConfig(self.address, env) if len(self.sections) == 1: q_mask = 1 else: q_mask = config.quadMask() for q in range(len(self.sections)): if (not ((1 << q) & q_mask)): continue # XXX Make up section mask for the emission detector. Needs # to be checked! import _pdsdata if len(self.sections) == 1 and type(config) in ( _pdsdata.cspad2x2.ConfigV1, _pdsdata.cspad2x2.ConfigV2): s_mask = config.roiMask() else: s_mask = config.roiMask(q) for s in range(len(self.sections[q])): # XXX DAQ misconfiguration? This mask appears not to work # reliably for the Sc1 detector. # if (not((1 << s) & s_mask)): # continue corners = self.sections[q][s].corners() i_row = int(round(min(c[0] for c in corners))) i_column = int(round(min(c[1] for c in corners))) n_rows = int(round(max(c[0] for c in corners))) - i_row n_columns = int(round(max( c[1] for c in corners))) - i_column section_img = self.cspad_img.matrix_copy_block( i_row=i_row, i_column=i_column, n_rows=n_rows, n_columns=n_columns) section_mask = cspad_mask.matrix_copy_block( i_row=i_row, i_column=i_column, n_rows=n_rows, n_columns=n_columns) section_stddev = self.dark_stddev.matrix_copy_block( i_row=i_row, i_column=i_column, n_rows=n_rows, n_columns=n_columns) if section_mask.count(True) == 0: continue if self.common_mode_correction == "chebyshev": assert len(self.sections[q]) == 2 if s == 0: section_imgs = [section_img] section_masks = [section_mask] i_rows = [i_row] i_columns = [i_column] continue else: section_imgs.append(section_img) section_masks.append(section_mask) i_rows.append(i_row) i_columns.append(i_column) chebyshev_corrected_imgs = self.chebyshev_common_mode( section_imgs, section_masks) for i in range(2): section_imgs[i].as_1d().copy_selected( section_masks[i].as_1d().iselection(), chebyshev_corrected_imgs[i].as_1d()) self.cspad_img.matrix_paste_block_in_place( block=section_imgs[i], i_row=i_rows[i], i_column=i_columns[i]) else: common_mode = self.common_mode( section_img, section_stddev, section_mask) self.sum_common_mode += common_mode self.sumsq_common_mode += common_mode**2 # Apply the common mode correction to the # section, and paste it back into the image. self.cspad_img.matrix_paste_block_in_place( block=section_img - common_mode, i_row=i_row, i_column=i_column) if self.gain_map is not None: self.cspad_img *= self.gain_map if (self.mask_img is not None): sel = (self.mask_img == -2) | (self.mask_img == cspad_tbx.cspad_mask_value) self.cspad_img.set_selected(sel, cspad_tbx.cspad_mask_value) if (self.address == 'XppEndstation-0|Rayonix-0' or \ self.address == 'MfxEndstation-0|Rayonix-0') and \ self.crop_rayonix: # Crop the masked data so that the beam center is in the center of the image self.cspad_img = self.cspad_img[self.rayonix_crop_slice[0], self.rayonix_crop_slice[1]] if self.cache_image: # Store the image in the event. evt.put(self.cspad_img, self.address)
def event(self, evt, env): """The event() function is called for every L1Accept transition. XXX more? Previously, common-mode correction was applied only after initial threshold filtering. Since the common_mode class applies the (lengthy) common-mode correction immediately after reading the image from the stream, this optimisation is currently not (elegantly) doable. @param evt Event data object, a configure object @param env Environment object """ super(mod_hitfind, self).event(evt, env) if (evt.get("skip_event")): return # This module only applies to detectors for which a distance is # available. distance = cspad_tbx.env_distance(self.address, env, self._detz_offset) if distance is None: self.nfail += 1 self.logger.warning("event(): no distance, shot skipped") evt.put(skip_event_flag(), "skip_event") return device = cspad_tbx.address_split(self.address)[2] # ***** HITFINDING ***** XXX For hitfinding it may be interesting # to look at the fraction of subzero pixels in the dark-corrected # image. if (self.m_threshold is not None): # If a threshold value is given it can be applied in one of three ways: # 1. Apply it over the whole image if (self.m_roi is None and self.m_distl_min_peaks is None): vmax = flex.max(self.cspad_img) if (vmax < self.m_threshold): if not self.m_negate_hits: # Tell downstream modules to skip this event if the threshold was not met. evt.put(skip_event_flag(), "skip_event") return elif self.m_negate_hits: evt.put(skip_event_flag(), "skip_event") return # 2. Apply threshold over a rectangular region of interest. elif (self.m_roi is not None): vmax = flex.max(self.cspad_img[self.m_roi[2]:self.m_roi[3], self.m_roi[0]:self.m_roi[1]]) if (vmax < self.m_threshold): if not self.m_negate_hits: evt.put(skip_event_flag(), "skip_event") return elif self.m_negate_hits: evt.put(skip_event_flag(), "skip_event") return # 3. Determine the spotfinder spots within the central ASICS, and accept the # image as a hit if there are m_distl_min_peaks exceeding m_threshold. # As a further requirement, the peaks must exceed 2.5 * the 90-percentile # pixel value of the central ASICS. This filter was added to avoid high-background # false positives. elif (self.m_distl_min_peaks is not None): if device == 'marccd': self.hitfinder_d['BEAM_CENTER_X'] = self.beam_center[0] self.hitfinder_d['BEAM_CENTER_Y'] = self.beam_center[1] elif device == 'Rayonix': self.hitfinder_d['BEAM_CENTER_X'] = self.beam_center[0] self.hitfinder_d['BEAM_CENTER_Y'] = self.beam_center[1] peak_heights, outvalue = self.distl_filter( self.address, self.cspad_img.iround(), # XXX correct? distance, self.timestamp, self.wavelength) if ('permissive' in self.m_distl_flags): number_of_accepted_peaks = (peak_heights > self.m_threshold).count(True) else: number_of_accepted_peaks = (( peak_heights > self.m_threshold).__and__( outvalue == 0)).count(True) sec, ms = cspad_tbx.evt_time(evt) evt_time = sec + ms / 1000 self.stats_logger.info("BRAGG %.3f %d" % (evt_time, number_of_accepted_peaks)) skip_event = False if number_of_accepted_peaks < self.m_distl_min_peaks: self.logger.info( "Subprocess %02d: Spotfinder NO HIT image #%05d @ %s; %d spots > %d" % (env.subprocess(), self.nshots, self.timestamp, number_of_accepted_peaks, self.m_threshold)) if not self.m_negate_hits: skip_event = True else: self.logger.info( "Subprocess %02d: Spotfinder YES HIT image #%05d @ %s; %d spots > %d" % (env.subprocess(), self.nshots, self.timestamp, number_of_accepted_peaks, self.m_threshold)) if self.m_negate_hits: skip_event = True if skip_event: if self.m_db_logging: # log misses to the database self.queue_entry( (self.trial, evt.run(), "%.3f" % evt_time, number_of_accepted_peaks, distance, self.sifoil, self.wavelength, False, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, self.m_db_tags)) evt.put(skip_event_flag(), "skip_event") return # the indexer will log this hit when it is ran. Bug: if the spotfinder is ran by itself, this # hit will not be logged in the db. evt.put(number_of_accepted_peaks, 'sfspots') self.logger.info("Subprocess %02d: process image #%05d @ %s" % (env.subprocess(), self.nshots, self.timestamp)) # See r17537 of mod_average.py. if device == 'Cspad': pixel_size = cspad_tbx.pixel_size saturated_value = cspad_tbx.cspad_saturated_value elif device == 'marccd': pixel_size = evt.get("marccd_pixel_size") saturated_value = evt.get("marccd_saturated_value") elif device == 'Rayonix': pixel_size = rayonix_tbx.get_rayonix_pixel_size(self.bin_size) saturated_value = rayonix_tbx.rayonix_saturated_value d = cspad_tbx.dpack( active_areas=self.active_areas, address=self.address, beam_center_x=pixel_size * self.beam_center[0], beam_center_y=pixel_size * self.beam_center[1], data=self.cspad_img.iround(), # XXX ouch! distance=distance, pixel_size=pixel_size, saturated_value=saturated_value, timestamp=self.timestamp, wavelength=self.wavelength, xtal_target=self.m_xtal_target) if (self.m_dispatch == "index"): import sys from xfel.cxi.integrate_image_api import integrate_one_image info = integrate_one_image( d, integration_dirname=self.m_integration_dirname, integration_basename=self.m_integration_basename) sys.stdout = sys.__stdout__ sys.stderr = sys.__stderr__ indexed = info is not None and hasattr(info, 'spotfinder_results') if self.m_progress_logging: if self.m_db_version == 'v1': if indexed: # integration pickle dictionary is available here as info.last_saved_best if info.last_saved_best[ "identified_isoform"] is not None: #print info.last_saved_best.keys() from cxi_xdr_xes.cftbx.cspad_ana import db dbobj = db.dbconnect(self.m_db_host, self.m_db_name, self.m_db_user, self.m_db_password) cursor = dbobj.cursor() if info.last_saved_best[ "identified_isoform"] in self.isoforms: PM, indices, miller_id = self.isoforms[ info.last_saved_best["identified_isoform"]] else: from xfel.xpp.progress_support import progress_manager PM = progress_manager(info.last_saved_best, self.m_db_experiment_tag, self.m_trial_id, self.m_rungroup_id, evt.run()) indices, miller_id = PM.get_HKL(cursor) # cache these as they don't change for a given isoform self.isoforms[info.last_saved_best[ "identified_isoform"]] = PM, indices, miller_id if self.m_sql_buffer_size > 1: self.queue_progress_entry( PM.scale_frame_detail(self.timestamp, cursor, do_inserts=False)) else: PM.scale_frame_detail(self.timestamp, cursor, do_inserts=True) dbobj.commit() cursor.close() dbobj.close() elif self.m_db_version == 'v2': key_low = 'cctbx.xfel.radial_average.two_theta_low' key_high = 'cctbx.xfel.radial_average.two_theta_high' tt_low = evt.get(key_low) tt_high = evt.get(key_high) from xfel.ui.db.dxtbx_db import log_frame if indexed: n_spots = len(info.spotfinder_results.images[ info.frames[0]]['spots_total']) else: sfspots = evt.get('sfspots') if sfspots is None: if info is None or not isinstance(info, int): n_spots = 0 else: n_spots = info else: n_spots = sfspots if indexed: known_setting = info.horizons_phil.known_setting indexed_setting = info.organizer.info[ 'best_integration']['counter'] if known_setting is None or known_setting == indexed_setting: from xfel.command_line.frame_unpickler import construct_reflection_table_and_experiment_list c = construct_reflection_table_and_experiment_list( info.last_saved_best, None, pixel_size, proceed_without_image=True) c.assemble_experiments() c.assemble_reflections() log_frame(c.experiment_list, c.reflections, self.db_params, evt.run(), n_spots, self.timestamp, tt_low, tt_high) else: print( "Not logging %s, wrong bravais setting (expecting %d, got %d)" % (self.timestamp, known_setting, indexed_setting)) else: log_frame(None, None, self.db_params, evt.run(), n_spots, self.timestamp, tt_low, tt_high) if self.m_db_logging: sec, ms = cspad_tbx.evt_time(evt) evt_time = sec + ms / 1000 sfspots = evt.get('sfspots') if sfspots is None: if indexed: n_spots = len(info.spotfinder_results.images[ info.frames[0]]['spots_total']) else: n_spots = 0 else: n_spots = sfspots if indexed: mosaic_bloc_rotation = info.last_saved_best.get( 'ML_half_mosaicity_deg', [0])[0] mosaic_block_size = info.last_saved_best.get( 'ML_domain_size_ang', [0])[0] ewald_proximal_volume = info.last_saved_best.get( 'ewald_proximal_volume', [0])[0] obs = info.last_saved_best['observations'][0] cell_a, cell_b, cell_c, cell_alpha, cell_beta, cell_gamma = obs.unit_cell( ).parameters() pointgroup = info.last_saved_best['pointgroup'] resolution = obs.d_min() else: mosaic_bloc_rotation = mosaic_block_size = ewald_proximal_volume = cell_a = cell_b = cell_c = \ cell_alpha = cell_beta = cell_gamma = spacegroup = resolution = 0 self.queue_entry( (self.trial, evt.run(), "%.3f" % evt_time, n_spots, distance, self.sifoil, self.wavelength, indexed, mosaic_bloc_rotation, mosaic_block_size, ewald_proximal_volume, pointgroup, cell_a, cell_b, cell_c, cell_alpha, cell_beta, cell_gamma, resolution, self.m_db_tags)) if (not indexed): evt.put(skip_event_flag(), "skip_event") return elif (self.m_dispatch == "nop"): pass elif (self.m_dispatch == "view"): #interactive image viewer args = ["indexing.data=dummy"] detector_format_version = detector_format_function( self.address, evt.GetTime()) if detector_format_version is not None: args += [ "distl.detector_format_version=%" % detector_format_version ] from xfel.phil_preferences import load_cxi_phil horizons_phil = load_cxi_phil(self.m_xtal_target, args) horizons_phil.indexing.data = d from xfel.cxi import display_spots display_spots.parameters.horizons_phil = horizons_phil display_spots.wrapper_of_callback().display( horizons_phil.indexing.data) elif (self.m_dispatch == "spots"): #interactive spotfinder viewer args = ["indexing.data=dummy"] detector_format_version = detector_format_function( self.address, evt.GetTime()) if detector_format_version is not None: args += [ "distl.detector_format_version=%s" % detector_format_version ] from xfel.phil_preferences import load_cxi_phil horizons_phil = load_cxi_phil(self.m_xtal_target, args) horizons_phil.indexing.data = d from xfel.cxi import display_spots display_spots.parameters.horizons_phil = horizons_phil from rstbx.new_horizons.index import pre_indexing_validation, pack_names pre_indexing_validation(horizons_phil) imagefile_arguments = pack_names(horizons_phil) horizons_phil.persist.show() from spotfinder.applications import signal_strength info = signal_strength.run_signal_strength_core( horizons_phil, imagefile_arguments) work = display_spots.wrapper_of_callback(info) work.display_with_callback(horizons_phil.indexing.data) elif (self.m_dispatch == "write_dict"): self.logger.warning( "event(): deprecated dispatch 'write_dict', use mod_dump instead" ) if (self.m_out_dirname is not None or self.m_out_basename is not None): cspad_tbx.dwritef(d, self.m_out_dirname, self.m_out_basename) # Diagnostic message emitted only when all the processing is done. if (env.subprocess() >= 0): self.logger.info("Subprocess %02d: accepted #%05d @ %s" % (env.subprocess(), self.nshots, self.timestamp)) else: self.logger.info("Accepted #%05d @ %s" % (self.nshots, self.timestamp))
class common_mode_correction(mod_event_info): """Dark subtraction and alternate implementation of common mode substituting for cspad_tbx. Known problems: the algorithm relies on a substantial part of the sensor having no signal, which is not the case if a water ring crosses the sensor. """ def __init__(self, address, calib_dir=None, common_mode_correction="none", photon_threshold=None, two_photon_threshold=None, dark_path=None, dark_stddev=None, mask_path=None, gain_map_path=None, gain_map_level=None, cache_image=True, roi=None, laser_1_status=None, laser_4_status=None, laser_wait_time=None, override_beam_x=None, override_beam_y=None, bin_size=None, crop_rayonix=False, **kwds): """The common_mode_correction class constructor stores the parameters passed from the pyana configuration file in instance variables. @param address Full data source address of the DAQ device @param calib_dir Directory with calibration information @param common_mode_correction The type of common mode correction to apply @param dark_path Path to input average dark image @param dark_stddev Path to input standard deviation dark image, required if @p dark_path is given @param mask_path Path to input mask. Pixels to mask out should be set to -2 @param gain_map_path Path to input gain map. Multiplied times the image. @param gain_map_level If set, all the '1' pixels in the gain_map are set to this multiplier and all the '0' pixels in the gain_map are set to '1'. If not set, use the values in the gain_map directly @param laser_1_status 0 or 1 to indicate that the laser should be off or on respectively @param laser_4_status 0 or 1 to indicate that the laser should be off or on respectively @param laser_wait_time Length of time in milliseconds to wait after a laser change of status to begin accepting images again. (rejection of images occurs immediately after status change). @param override_beam_x override value for x coordinate of beam center in pixels @param override_beam_y override value for y coordinate of beam center in pixels @param bin_size bin size for rayonix detector used to determin pixel size @param crop_rayonix whether to crop rayonix images such that image center is the beam center """ # Cannot use the super().__init__() construct here, because # common_mode_correction refers to the argument, and not the # class. mod_event_info.__init__(self, address=address, **kwds) # The paths will be substituted in beginjob(), where evt and env # are available. self._dark_path = cspad_tbx.getOptString(dark_path) self._dark_stddev_path = cspad_tbx.getOptString(dark_stddev) self._gain_map_path = cspad_tbx.getOptString(gain_map_path) self._mask_path = cspad_tbx.getOptString(mask_path) self.gain_map_level = cspad_tbx.getOptFloat(gain_map_level) self.common_mode_correction = cspad_tbx.getOptString(common_mode_correction) self.photon_threshold = cspad_tbx.getOptFloat(photon_threshold) self.two_photon_threshold = cspad_tbx.getOptFloat(two_photon_threshold) self.cache_image = cspad_tbx.getOptBool(cache_image) self.filter_laser_1_status = cspad_tbx.getOptInteger(laser_1_status) self.filter_laser_4_status = cspad_tbx.getOptInteger(laser_4_status) if self.filter_laser_1_status is not None: self.filter_laser_1_status = bool(self.filter_laser_1_status) if self.filter_laser_4_status is not None: self.filter_laser_4_status = bool(self.filter_laser_4_status) self.filter_laser_wait_time = cspad_tbx.getOptInteger(laser_wait_time) self.override_beam_x = cspad_tbx.getOptFloat(override_beam_x) self.override_beam_y = cspad_tbx.getOptFloat(override_beam_y) self.bin_size = cspad_tbx.getOptInteger(bin_size) self.crop_rayonix = cspad_tbx.getOptBool(crop_rayonix) self.cspad_img = None # The current image - set by self.event() self.sum_common_mode = 0 self.sumsq_common_mode = 0 self.roi = cspad_tbx.getOptROI(roi) # used to ignore the signal region in chebyshev fit assert self.common_mode_correction in \ ("gaussian", "mean", "median", "mode", "none", "chebyshev") # Get and parse metrology. self.sections = None device = cspad_tbx.address_split(self.address)[2] if device == 'Andor': self.sections = [] # XXX FICTION elif device == 'Cspad': if self.address == 'XppGon-0|Cspad-0': self.sections = [] # Not used for XPP else: self.sections = calib2sections(cspad_tbx.getOptString(calib_dir)) elif device == 'Cspad2x2': # There is no metrology information for the Sc1 detector, so # make it up. The sections are rotated by 90 degrees with # respect to the "standing up" convention. self.sections = [[Section(90, (185 / 2 + 0, (2 * 194 + 3) / 2)), Section(90, (185 / 2 + 185, (2 * 194 + 3) / 2))]] elif device == 'marccd': self.sections = [] # XXX FICTION elif device == 'pnCCD': self.sections = [] # XXX FICTION elif device == 'Rayonix': self.sections = [] # XXX FICTION elif device == 'Opal1000': self.sections = [] # XXX FICTION if self.sections is None: raise RuntimeError("Failed to load metrology") def beginjob(self, evt, env): """The beginjob() function does one-time initialisation from event- or environment data. It is called at an XTC configure transition. @param evt Event data object, a configure object @param env Environment object """ super(common_mode_correction, self).beginjob(evt, env) # Load the dark image and ensure it is signed and at least 32 bits # wide, since it will be used for differencing. If a dark image # is provided, a standard deviation image is required, and all the # ADU scales must match up. # # XXX Can we zap all the ADU_SCALE stuff? # # XXX Do we really need to store the substituted values in the # instance here? At least self._dark_path is referenced later on. # # Note that this will load the dark, standard deviation and gain # once (SEVERAL TIMES) for each process, but the gain is that we # can do substitutions. But it is only done at the beginning of # the job. self.dark_img = None if self._dark_path is not None: self._dark_path = cspad_tbx.getOptEvalOrString( cspad_tbx.pathsubst(self._dark_path, evt, env)) assert self._dark_stddev_path is not None dark_dict = easy_pickle.load(self._dark_path) #assert "ADU_SCALE" not in dark_dict # force use of recalculated dark self.dark_img = dark_dict['DATA'] assert isinstance(self.dark_img, flex.double) self._dark_stddev_path = cspad_tbx.getOptEvalOrString( cspad_tbx.pathsubst(self._dark_stddev_path, evt, env)) self.dark_stddev = easy_pickle.load(self._dark_stddev_path)['DATA'] assert isinstance(self.dark_stddev, flex.double) self.dark_mask = (self.dark_stddev > 0) # Load the mask image and ensure it is signed and at least 32 bits # wide, since it will be used for differencing. self.gain_map = None if self._gain_map_path is not None: self._gain_map_path = cspad_tbx.getOptEvalOrString( cspad_tbx.pathsubst(self._gain_map_path, evt, env)) self.gain_map = easy_pickle.load(self._gain_map_path)['DATA'] if self.gain_map_level is not None: sel = flex.bool([bool(f) for f in self.gain_map]) sel.reshape(flex.grid(self.gain_map.focus())) self.gain_map = self.gain_map.set_selected(~sel, self.gain_map_level) self.gain_map = self.gain_map.set_selected(sel, 1) assert isinstance(self.gain_map, flex.double) self.mask_img = None if self._mask_path is not None: self._mask_path = cspad_tbx.getOptEvalOrString( cspad_tbx.pathsubst(self._mask_path, evt, env)) self.mask_img = easy_pickle.load(self._mask_path)['DATA'] assert isinstance(self.mask_img, flex.double) \ or isinstance(self.mask_img, flex.int) if self.address == 'XppGon-0|marccd-0': #mod_mar.py will set these during its event function self.active_areas = None self.beam_center = None elif self.address == 'XppEndstation-0|Rayonix-0' or \ self.address == 'MfxEndstation-0|Rayonix-0': assert self.override_beam_x is not None assert self.override_beam_y is not None from xfel.cxi.cspad_ana import rayonix_tbx maxx, maxy = rayonix_tbx.get_rayonix_detector_dimensions(self.bin_size) if self.crop_rayonix: bx = int(round(self.override_beam_x)) by = int(round(self.override_beam_y)) minsize = min([bx,by,maxx-bx,maxy-by]) self.beam_center = minsize,minsize self.active_areas = flex.int([0,0,2*minsize,2*minsize]) self.rayonix_crop_slice = slice(by-minsize,by+minsize), slice(bx-minsize,bx+minsize) else: self.beam_center = self.override_beam_x,self.override_beam_y self.active_areas = flex.int([0,0,maxx,maxy]) elif self.address == 'XppGon-0|Cspad-0': evt_time = cspad_tbx.evt_time(evt) # tuple of seconds, milliseconds timestamp = cspad_tbx.evt_timestamp(evt_time) # human readable format from iotbx.detectors.cspad_detector_formats import detector_format_version, reverse_timestamp from xfel.cxi.cspad_ana.cspad_tbx import xpp_active_areas version_lookup = detector_format_version(self.address, reverse_timestamp(timestamp)[0]) assert version_lookup is not None self.active_areas = xpp_active_areas[version_lookup]['active_areas'] self.beam_center = [1765 // 2, 1765 // 2] else: (self.beam_center, self.active_areas) = cspad_tbx.cbcaa( cspad_tbx.getConfig(self.address, env), self.sections) def common_mode(self, img, stddev, mask): """The common_mode() function returns the mode of image stored in the array pointed to by @p img. @p mask must be such that the @p stddev at the selected pixels is greater than zero. @param img 2D integer array of the image @param stddev 2D integer array of the standard deviation of each pixel in @p img @param mask 2D Boolean array, @c True if the pixel is to be included, @c False otherwise @return Mode of the image, as a real number """ # Flatten the image and take out inactive pixels XXX because we # cannot take means and medians of 2D arrays? img_1d = img.as_1d().select(mask.as_1d()).as_double() assert img_1d.size() > 0 if (self.common_mode_correction == "mean"): # The common mode is approximated by the mean of the pixels with # signal-to-noise ratio less than a given threshold. XXX Breaks # if the selection is empty! THRESHOLD_SNR = 2 img_snr = img_1d / stddev.as_double().as_1d().select(mask.as_1d()) return (flex.mean(img_1d.select(img_snr < THRESHOLD_SNR))) elif (self.common_mode_correction == "median"): return (flex.median(img_1d)) # Identify the common-mode correction as the peak histogram of the # histogram of pixel values (the "standard" common-mode correction, as # previously implemented in this class). hist_min = -40 hist_max = 40 n_slots = 100 hist = flex.histogram(img_1d, hist_min, hist_max, n_slots=n_slots) slots = hist.slots() i = flex.max_index(slots) common_mode = list(hist.slot_infos())[i].center() if (self.common_mode_correction == "mode"): return (common_mode) # Determine the common-mode correction from the peak of a single # Gaussian function fitted to the histogram. from scitbx.math.curve_fitting import single_gaussian_fit x = hist.slot_centers() y = slots.as_double() fit = single_gaussian_fit(x, y) scale, mu, sigma = fit.a, fit.b, fit.c self.logger.debug("fitted gaussian: mu=%.3f, sigma=%.3f" %(mu, sigma)) mode = common_mode common_mode = mu if abs(mode-common_mode) > 1000: common_mode = mode # XXX self.logger.debug("delta common mode corrections: %.3f" %(mode-common_mode)) if 0 and abs(mode-common_mode) > 0: #if 0 and skew > 0.5: # view histogram and fitted gaussian from numpy import exp from matplotlib import pyplot x_all = x n, bins, patches = pyplot.hist(section_img.as_1d().as_numpy_array(), bins=n_slots, range=(hist_min, hist_max)) y_all = scale * flex.exp(-flex.pow2(x_all-mu) / (2 * sigma**2)) scale = slots[flex.max_index(slots)] y_all *= scale/flex.max(y_all) pyplot.plot(x_all, y_all) pyplot.show() return (common_mode) def event(self, evt, env): """The event() function is called for every L1Accept transition. @param evt Event data object, a configure object @param env Environment object """ super(common_mode_correction, self).event(evt, env) if (evt.get("skip_event")): return if not hasattr(self, 'active_areas') or self.active_areas is None or \ not hasattr(self, 'beam_center') or self.beam_center is None: if self.address == 'XppGon-0|marccd-0': # The mod_mar module needs to have been called before this one # to set this up. The MAR does not have a configure object. self.beam_center = evt.get("marccd_beam_center") self.active_areas = evt.get("marccd_active_areas") elif self.address == 'XppEndstation-0|Rayonix-0' or \ self.address == 'MfxEndstation-0|Rayonix-0': pass # bc and aa set in the beginjob function elif self.address == 'XppGon-0|Cspad-0': # Load the active areas as determined from the optical metrology from iotbx.detectors.cspad_detector_formats import detector_format_version, reverse_timestamp from xfel.cxi.cspad_ana.cspad_tbx import xpp_active_areas version_lookup = detector_format_version(self.address, reverse_timestamp(self.timestamp)[0]) assert version_lookup is not None self.active_areas = xpp_active_areas[version_lookup]['active_areas'] self.beam_center = [1765 // 2, 1765 // 2] else: (self.beam_center, self.active_areas) = \ cspad_tbx.cbcaa(cspad_tbx.getConfig(self.address, env), self.sections) if self.filter_laser_1_status is not None: if (self.laser_1_status.status != self.filter_laser_1_status or (self.laser_1_ms_since_change is not None and self.laser_1_ms_since_change < self.filter_laser_wait_time)): evt.put(skip_event_flag(), "skip_event") return if self.filter_laser_4_status is not None: if (self.laser_4_status.status != self.filter_laser_4_status or (self.laser_4_ms_since_change is not None and self.laser_4_ms_since_change < self.filter_laser_wait_time)): evt.put(skip_event_flag(), "skip_event") return # Early return if the full detector image is already stored in the # event. Otherwise, get it from the stream as a double-precision # floating-point flex array. XXX It is probably not safe to key # the image on self.address, so we should come up with our own # namespace. XXX Misnomer--could be CAMP, too self.cspad_img = evt.get(self.address) if self.cspad_img is not None: return if self.address == 'XppGon-0|Cspad-0': # Kludge until cspad_tbx.image() can be rewritten to handle the # XPP metrology. self.cspad_img = cspad_tbx.image_xpp( self.address, evt, env, self.active_areas) elif self.address == 'XppEndstation-0|Rayonix-0' or \ self.address == 'MfxEndstation-0|Rayonix-0': from psana import Source, Camera import numpy as np address = cspad_tbx.old_address_to_new_address(self.address) src=Source('DetInfo(%s)'%address) self.cspad_img = evt.get(Camera.FrameV1,src) if self.cspad_img is not None: self.cspad_img = self.cspad_img.data16().astype(np.float64) elif self.address=='CxiDg3-0|Opal1000-0': if evt.getFrameValue(self.address) is not None: self.cspad_img = evt.getFrameValue(self.address).data() elif self.address=='CxiEndstation-0|Opal1000-2': if evt.getFrameValue(self.address) is not None: self.cspad_img = evt.getFrameValue(self.address).data() elif self.address=='FeeHxSpectrometer-0|Opal1000-1': if evt.getFrameValue(self.address) is not None: self.cspad_img = evt.getFrameValue(self.address).data() elif self.address=='NoDetector-0|Cspad2x2-0': import numpy as np from pypdsdata import xtc test=[] self.cspad_img = evt.get(xtc.TypeId.Type.Id_Cspad2x2Element,self.address).data() self.cspad_img=np.reshape(self.cspad_img,(370, 388)) else: try: self.cspad_img = cspad_tbx.image( self.address, cspad_tbx.getConfig(self.address, env), evt, env, self.sections) except Exception, e: self.logger.error("Error reading image data: " + str(e)) evt.put(skip_event_flag(), "skip_event") return if self.cspad_img is None: if cspad_tbx.address_split(self.address)[2] != 'Andor': self.nfail += 1 self.logger.warning("event(): no image, shot skipped") evt.put(skip_event_flag(), "skip_event") return self.cspad_img = flex.double(self.cspad_img.astype(numpy.float64)) # If a dark image was provided, subtract it from the image. There # is no point in doing common-mode correction unless the dark # image was subtracted. if (self.dark_img is not None): self.cspad_img -= self.dark_img if (self.common_mode_correction != "none"): # Mask out inactive pixels prior to common mode correction. # Pixels are marked as inactive either due to low ADU values # or non-positive standard deviations in dark image. XXX Make # the threshold tunable? cspad_mask = self.dark_mask.deep_copy() if self.roi is not None and self.common_mode_correction == "chebyshev": roi_mask = cspad_mask[self.roi[2]:self.roi[3], :] roi_mask = flex.bool(roi_mask.accessor(), False) cspad_mask.matrix_paste_block_in_place( block=roi_mask, i_row=self.roi[2], i_column=0) # Extract each active section from the assembled detector # image and apply the common mode correction. XXX Make up a # quadrant mask for the emission detector. Needs to be # checked! config = cspad_tbx.getConfig(self.address, env) if len(self.sections) == 1: q_mask = 1 else: q_mask = config.quadMask() for q in xrange(len(self.sections)): if (not((1 << q) & q_mask)): continue # XXX Make up section mask for the emission detector. Needs # to be checked! import _pdsdata if len(self.sections) == 1 and type(config) in ( _pdsdata.cspad2x2.ConfigV1, _pdsdata.cspad2x2.ConfigV2): s_mask = config.roiMask() else: s_mask = config.roiMask(q) for s in xrange(len(self.sections[q])): # XXX DAQ misconfiguration? This mask appears not to work # reliably for the Sc1 detector. # if (not((1 << s) & s_mask)): # continue corners = self.sections[q][s].corners() i_row = int(round(min(c[0] for c in corners))) i_column = int(round(min(c[1] for c in corners))) n_rows = int(round(max(c[0] for c in corners))) - i_row n_columns = int(round(max(c[1] for c in corners))) - i_column section_img = self.cspad_img.matrix_copy_block( i_row = i_row, i_column = i_column, n_rows = n_rows, n_columns = n_columns) section_mask = cspad_mask.matrix_copy_block( i_row = i_row, i_column = i_column, n_rows = n_rows, n_columns = n_columns) section_stddev = self.dark_stddev.matrix_copy_block( i_row = i_row, i_column = i_column, n_rows = n_rows, n_columns = n_columns) if section_mask.count(True) == 0: continue if self.common_mode_correction == "chebyshev": assert len(self.sections[q]) == 2 if s == 0: section_imgs = [section_img] section_masks = [section_mask] i_rows = [i_row] i_columns = [i_column] continue else: section_imgs.append(section_img) section_masks.append(section_mask) i_rows.append(i_row) i_columns.append(i_column) chebyshev_corrected_imgs = self.chebyshev_common_mode( section_imgs, section_masks) for i in range(2): section_imgs[i].as_1d().copy_selected( section_masks[i].as_1d().iselection(), chebyshev_corrected_imgs[i].as_1d()) self.cspad_img.matrix_paste_block_in_place( block=section_imgs[i], i_row=i_rows[i], i_column=i_columns[i]) else: common_mode = self.common_mode( section_img, section_stddev, section_mask) self.sum_common_mode += common_mode self.sumsq_common_mode += common_mode**2 # Apply the common mode correction to the # section, and paste it back into the image. self.cspad_img.matrix_paste_block_in_place( block = section_img - common_mode, i_row = i_row, i_column = i_column) if self.gain_map is not None: self.cspad_img *= self.gain_map if (self.mask_img is not None): sel = (self.mask_img == -2 )|(self.mask_img == cspad_tbx.cspad_mask_value) self.cspad_img.set_selected(sel, cspad_tbx.cspad_mask_value) if (self.address == 'XppEndstation-0|Rayonix-0' or \ self.address == 'MfxEndstation-0|Rayonix-0') and \ self.crop_rayonix: # Crop the masked data so that the beam center is in the center of the image self.cspad_img = self.cspad_img[self.rayonix_crop_slice[0], self.rayonix_crop_slice[1]] if self.cache_image: # Store the image in the event. evt.put(self.cspad_img, self.address)
def event(self, evt, env): """The event() function is called for every L1Accept transition. It outputs the detector image associated with the event @p evt to the file system. @param evt Event data object, a configure object @param env Environment object """ super(mod_dump_bitmap, self).event(evt, env) if (evt.get('skip_event')): return # Where the sample-detector distance is not available, set it to # zero. distance = cspad_tbx.env_distance(self.address, env, self._detz_offset) if distance is None: distance = 0 # See r17537 of mod_average.py. device = cspad_tbx.address_split(self.address)[2] if device == 'Cspad': pixel_size = cspad_tbx.pixel_size saturated_value = cspad_tbx.cspad_saturated_value elif device == 'marccd': pixel_size = 0.079346 saturated_value = 2**16 - 1 from iotbx.detectors import FlexImage_d as FlexImage vendortype = device saturation = 65535 flex_img = FlexImage( rawdata=self.cspad_img, binning=self._binning, vendortype=vendortype, brightness=self._brightness, saturation=saturated_value) flex_img.setWindow(0, 0, 1) flex_img.adjust(color_scheme=self._color_scheme) flex_img.prep_string() import Image # XXX is size//self._binning safe here? pil_img = Image.fromstring( 'RGB', (flex_img.size2()//self._binning, flex_img.size1()//self._binning), flex_img.export_string) # The output path should not contain any funny characters which may # not work in all environments. This constructs a sequence number a # la evt_seqno() from the dictionary's timestamp. t = self.timestamp s = t[0:4] + t[5:7] + t[8:10] + t[11:13] + t[14:16] + t[17:19] + t[20:23] path = os.path.join( self._dirname, self._basename + s + '.' + self._ext) self._logger.info("Exporting %s" %path) tmp_stream = open(path, 'wb') pil_img.save(tmp_stream, format=self._format) tmp_stream.close()
def endjob(self, obj1, obj2=None): """The endjob() function writes the mean and standard deviation images to disk. @param evt Event object (psana only) @param env Environment object """ if obj2 is None: env = obj1 else: evt = obj1 env = obj2 stats = super(mod_average, self).endjob(env) if stats is None: return device = cspad_tbx.address_split(self.address)[2] if device == 'Andor': beam_center = (0, 0) # XXX Fiction! pixel_size = 13.5e-3 # XXX Should not be hardcoded here! saturated_value = 10000 elif device == 'Cspad' or device == 'Cspad2x2': beam_center = self.beam_center pixel_size = cspad_tbx.pixel_size saturated_value = cspad_tbx.cspad_saturated_value elif device == 'marccd': beam_center = tuple(t // 2 for t in d['mean_img'].focus()) pixel_size = 0.079346 saturated_value = 2**16 - 1 if stats['nmemb'] > 0: if self.avg_dirname is not None or \ self.avg_basename is not None or \ self._mean_out is not None: d = cspad_tbx.dpack(active_areas=self.active_areas, address=self.address, beam_center_x=pixel_size * beam_center[0], beam_center_y=pixel_size * beam_center[1], data=stats['mean_img'], distance=stats['distance'], pixel_size=pixel_size, saturated_value=saturated_value, timestamp=cspad_tbx.evt_timestamp( stats['time']), wavelength=stats['wavelength']) if self._mean_out is not None: p = cspad_tbx.dwritef2(d, self._mean_out) else: p = cspad_tbx.dwritef(d, self.avg_dirname, self.avg_basename) self.logger.info("Average written to %s" % p) if self.stddev_dirname is not None or \ self.stddev_basename is not None or \ self._std_out is not None: d = cspad_tbx.dpack(active_areas=self.active_areas, address=self.address, beam_center_x=pixel_size * beam_center[0], beam_center_y=pixel_size * beam_center[1], data=stats['std_img'], distance=stats['distance'], pixel_size=pixel_size, saturated_value=saturated_value, timestamp=cspad_tbx.evt_timestamp( stats['time']), wavelength=stats['wavelength']) if self._std_out is not None: p = cspad_tbx.dwritef2(d, self._std_out) else: p = cspad_tbx.dwritef(d, self.stddev_dirname, self.stddev_basename) self.logger.info("Standard deviation written to %s" % p) if self.max_dirname is not None or \ self.max_basename is not None or \ self._max_out is not None: d = cspad_tbx.dpack(active_areas=self.active_areas, address=self.address, beam_center_x=pixel_size * beam_center[0], beam_center_y=pixel_size * beam_center[1], data=stats['max_img'], distance=stats['distance'], pixel_size=pixel_size, saturated_value=saturated_value, timestamp=cspad_tbx.evt_timestamp( stats['time']), wavelength=stats['wavelength']) if self._max_out is not None: p = cspad_tbx.dwritef2(d, self._max_out) else: p = cspad_tbx.dwritef(d, self.max_dirname, self.max_basename) self.logger.info("Max written to %s" % p) if stats['nfail'] == 0: self.logger.info("%d images processed" % stats['nmemb']) else: self.logger.warning("%d images processed, %d failed" % (stats['nmemb'], stats['nfail']))
def event(self, evt, env): """The event() function is called for every L1Accept transition. @param evt Event data object, a configure object @param env Environment object """ super(mod_image_dict, self).event(evt, env) if (evt.get("skip_event")): return if self.cspad_img is None: return # This module only applies to detectors for which a distance is # available. distance = cspad_tbx.env_distance(self.address, env, self._detz_offset) if distance is None: self.nfail += 1 self.logger.warning("event(): no distance, shot skipped") evt.put(skip_event_flag(), "skip_event") return device = cspad_tbx.address_split(self.address)[2] self.logger.info("Subprocess %02d: process image #%05d @ %s" % (env.subprocess(), self.nshots, self.timestamp)) # See r17537 of mod_average.py. if device == 'Cspad': pixel_size = cspad_tbx.pixel_size saturated_value = cspad_tbx.cspad_saturated_value elif device == 'Rayonix': pixel_size = rayonix_tbx.get_rayonix_pixel_size(self.bin_size) saturated_value = rayonix_tbx.rayonix_saturated_value elif device == 'marccd': pixel_size = evt.get("marccd_pixel_size") saturated_value = evt.get("marccd_saturated_value") if distance == 0: distance = evt.get("marccd_distance") d = cspad_tbx.dpack( active_areas=self.active_areas, address=self.address, beam_center_x=pixel_size * self.beam_center[0], beam_center_y=pixel_size * self.beam_center[1], data=self.cspad_img.iround(), # XXX ouch! distance=distance, pixel_size=pixel_size, saturated_value=saturated_value, timestamp=self.timestamp, wavelength=self.wavelength) evt.put(d, self.m_out_key) # Diagnostic message emitted only when all the processing is done. if (env.subprocess() >= 0): self.logger.info("Subprocess %02d: accepted #%05d @ %s" % (env.subprocess(), self.nshots, self.timestamp)) else: self.logger.info("Accepted #%05d @ %s" % (self.nshots, self.timestamp))